THE OPEN UNIVERSITY OF SRI LANKA
B. Sc. & B. Ed. DEGREE/STAND ALONE
COURSES IN SCIENCE Level 5 – 2013/2014
ASSIGNMENT TEST I (NBT)
CMU3122/CME5122 – Organometallic Chemistry

DURATION: 1 hour

DATE: 26 February 2014 (Wednesday)

TIME: 11.00 a, m. - 12.00 noon

ANSWER ALL QUESTIONS

Select the most correct answer to each question given below. Mark a cross (X) over the most suitable answer on the given answer script. Any answer with more than one cross will not be counted.

PART A (45 marks)

TANTA (43 marks)		
1. Consider the following orga (i) C ₂ H ₄ (ii) C The possible <i>dihapto</i> ligar	4H ₄ (iii) benze	ne
1) (i) only.	2) (i) and (ii) only. 5) (i), (ii) and (iii).	3) (i) and (iii) only.
2. The possible coordination	mode(s) of C ₃ H ₅ is/are?	- 1 . 2
 η' only. η² and η⁴ only. 	2) η^1 and η^2 only 5) η^1 , η^3 and η^5 only.	3) η^1 and η^3 only
	g ligands is not isoelectronic	
1) CS 2) N ₂	3) HC≡CH	4) CN^- 5) NO^+
 4. The IUPAC name of [NiCl-1] Chlorodicarbonyl(triha) 2) (η³-Allyl)dicarbonylch 3) Chloro(η³-allyl)dicarbonylch 4) (η³-Allyl)dicarbonylch 5) Dicarbonylchloro(η³-γ 	aptocyclopentadienyl)nickel nloronickel onylnickel(II) nloronickelate	
5. An LX type ligand is		
1) σ•allyl 2) η ³	$-C_3H_5$ 3) η^2 - C_4H_4 4)	CH ₃ Cl 5) η^5 -C ₅ H ₅
6. The strongest π -acceptor li		
1) CN 2) PCl ₁	3) PF ₃ 4) PPh ₃	5) PMe ₃
	del, which one of the followin e 3) π -allyl 4) ≡CPh	

8. Consider the following state	ements						
(i) PMe ₃ is a better π -	acceptor than PPh		and the second				
(ii) CO is a better σ-d	onor than CS						
(iii) CN ⁻ is a better σ-	donor than CO						
The correct statement/s is/a	uonoi man CO. 18a			(4. 1) (1. 1) (1. 1) (1. 1)			
1) (iii) only		// //>					
	2) (i) &		3) (i) & (iii) or	ıly			
4) (ii) & (iii) only	5) (1), (1	i) & (iii)					
9. The coordination number	of Ni in [NiCl(n³-(CaHa)(CO)al is					
1) 2 2) 3	3) 4 4) 5	5) 6					
10. Consider the following star (i) Coordination number of (ii) Oxidative-addition is faction (iii) Coordinatively saturated The correct statement/s is/ar	of the metal is incre acile if the metal c ed compounds can	eased by two un	nits during oxida	ative-addition.			
1) (i) only 4) (i) and (iii) only	2) (i) and (ii) onl 5) (i), (ii) and (iii		ii) and (iii) only				
11. What is the Valence Electr (Group number of Ni is 10) 1) 16 2) 17			-	?			
***	3) 18	4) 19	5) 20	*			
3) In the solid star4) There is no brid5) Each Co centre	8 metal. Co bond in the co te it has eight termi dging carbonyl liga does not obey 18e	nal ligands. nd in solution.					
13. Due to back donation in me	tal carbonyls,						
1) the σ-character of	the M–CO bond is	increased.					
2) M-CO bond order	is increased.						
the bond strength o	f C O is increased.						
4) the M–CO bond ler	ngth is increased.						
5) None of the above i	s correct.						
14. What is the d^n for Fe^{2+} ? (At 1) d^2 2) d^5 3) d^6	omic number of Fe						
1) d 2) d	4) d ⁷	5) d ⁸					
15. Consider the following state (i) Metal is in a hig (ii) Metal is a late to (iii) Carbene carbon The correct statement/s is/are	gh oxidation state. ransition metal.	her-carbenes.					
1) (ii) only	2) (i) and (ii)1	n de seesen de la de La decembra de la de					
4) (i) and (iii) only	2) (i) and (ii) only5) (i), (ii) and (iii)	_	3) (ii) and (iii) o	nly			

THE OPEN UNIVERSITY OF SRI LANKA
B. No DEGREE PROGRAMME 2013/2014
CMUM122/CMEM122 - ORGANOMETALLIC CHEMISTRY- LEVEL 5
ANNIGNMENT TEST-I (Part A)

MCO ANNWEIT SHEET: Mark a cross (X) over the most suitable answer.

																	Pa	rt A		
Roy I	ю,									For	Exa	min	ers	Use			Pa	rt B		
		Last	e de la composição de l		,	N.			1											
										4							Tot	al %		
														Marl	cs					
					Co	orr	ect	t Ans	swer	s										
					W:	ron	g A	Answe	ers											
					To	ota	1.													
1,	1	1.9			4	5		2.	1	2	3	4	5	3.	1	2	3	4	5	
	1000			·	, and		J		L			_		J			1			
4.] 2			4	5		5.	1	2	3	4	5	6.	1	2	3	4	5	
							-													
7.	İ] 2			4	5		8.	1	2	3	4	5	9.	1	2	3	4	5	
															Section Fillings					
10.		2		1 /	1	5		11.	1	2	3	4	5	12.	1	2	3	4	5	
1.1	1	19		1 4	l	5		14.	1	2	3	4	5	15.	1	2	3	4	5	

Part B (55 marks) Answer all the questions in the space provided. Attached sheets will not be graded. 1. (a) Give the IUPAC name for [FeCl₂(η^2 -C₂H₄)(η^6 -C₆H₆)]. (b) Draw the structure of [FeCl₂(η^2 -C₂H₄)(η^6 -C₆H₆)]. (c) Determine the VEC of Fe in [FeCl₂(η^2 -C₂H₄)(η^5 -C₅H₅)] using covalent model. (Indicate your break down; Group number of Fe is 8) (d) Determine the coordination number of Cr in [CrBr(η^3 -C₃H₅)(CO)₂(η^4 -C₄H₄)]. (e) Draw the structures of geometrical isomers of [FeCl3(PF1)(CO)2]. (f) Arrange NMe₃, NH₃, N₂ and H₂O in the order of increasing σ -donor ability.