THE OPEN UNIVERSITY OF SRI LANKA B. Sc. & B. Ed. DEGREE/STAND ALONE COURSES IN SCIENCE Level 5 – 2013/2014 ASSIGNMENT TEST I (NBT) CMU3122/CME5122 – Organometallic Chemistry **DURATION: 1 hour** DATE: 26 February 2014 (Wednesday) TIME: 11.00 a, m. - 12.00 noon ## ANSWER ALL QUESTIONS Select the most correct answer to each question given below. Mark a cross (X) over the most suitable answer on the given answer script. Any answer with more than one cross will not be counted. ## PART A (45 marks) | TANTA (43 marks) | | | |--|--|---| | 1. Consider the following orga
(i) C ₂ H ₄ (ii) C
The possible <i>dihapto</i> ligar | 4H ₄ (iii) benze | ne | | 1) (i) only. | 2) (i) and (ii) only.
5) (i), (ii) and (iii). | 3) (i) and (iii) only. | | 2. The possible coordination | mode(s) of C ₃ H ₅ is/are? | - 1 . 2 | | η' only. η² and η⁴ only. | 2) η^1 and η^2 only 5) η^1 , η^3 and η^5 only. | 3) η^1 and η^3 only | | | g ligands is not isoelectronic | | | 1) CS 2) N ₂ | 3) HC≡CH | 4) CN^- 5) NO^+ | | 4. The IUPAC name of [NiCl-1] Chlorodicarbonyl(triha) 2) (η³-Allyl)dicarbonylch 3) Chloro(η³-allyl)dicarbonylch 4) (η³-Allyl)dicarbonylch 5) Dicarbonylchloro(η³-γ | aptocyclopentadienyl)nickel
nloronickel
onylnickel(II)
nloronickelate | | | 5. An LX type ligand is | | | | 1) σ•allyl 2) η ³ | $-C_3H_5$ 3) η^2 - C_4H_4 4) | CH ₃ Cl 5) η^5 -C ₅ H ₅ | | 6. The strongest π -acceptor li | | | | 1) CN 2) PCl ₁ | 3) PF ₃ 4) PPh ₃ | 5) PMe ₃ | | | del, which one of the followin
e 3) π -allyl 4) ≡CPh | | | 8. Consider the following state | ements | | | | | | | |---|---|--|---------------------|--------------------------------|--|--|--| | (i) PMe ₃ is a better π - | acceptor than PPh | | and the second | | | | | | (ii) CO is a better σ-d | onor than CS | | | | | | | | (iii) CN ⁻ is a better σ- | donor than CO | | | | | | | | The correct statement/s is/a | uonoi man CO.
18a | | | (4. 1) (1. 1) (1. 1)
(1. 1) | | | | | 1) (iii) only | | //
//> | | | | | | | | 2) (i) & | | 3) (i) & (iii) or | ıly | | | | | 4) (ii) & (iii) only | 5) (1), (1 | i) & (iii) | | | | | | | 9. The coordination number | of Ni in [NiCl(n³-(| CaHa)(CO)al is | | | | | | | 1) 2 2) 3 | 3) 4 4) 5 | 5) 6 | | | | | | | 10. Consider the following star
(i) Coordination number of
(ii) Oxidative-addition is faction (iii) Coordinatively saturated
The correct statement/s is/ar | of the metal is incre
acile if the metal c
ed compounds can | eased by two un | nits during oxida | ative-addition. | | | | | 1) (i) only
4) (i) and (iii) only | 2) (i) and (ii) onl
5) (i), (ii) and (iii | | ii) and (iii) only | | | | | | 11. What is the Valence Electr
(Group number of Ni is 10)
1) 16 2) 17 | | | - | ? | | | | | *** | 3) 18 | 4) 19 | 5) 20 | * | | | | | 3) In the solid star4) There is no brid5) Each Co centre | 8 metal. Co bond in the co te it has eight termi dging carbonyl liga does not obey 18e | nal ligands.
nd in solution. | | | | | | | 13. Due to back donation in me | tal carbonyls, | | | | | | | | 1) the σ-character of | the M–CO bond is | increased. | | | | | | | 2) M-CO bond order | is increased. | | | | | | | | the bond strength o | f C O is increased. | | | | | | | | 4) the M–CO bond ler | ngth is increased. | | | | | | | | 5) None of the above i | s correct. | | | | | | | | 14. What is the d^n for Fe^{2+} ? (At 1) d^2 2) d^5 3) d^6 | omic number of Fe | | | | | | | | 1) d 2) d | 4) d ⁷ | 5) d ⁸ | | | | | | | 15. Consider the following state (i) Metal is in a hig (ii) Metal is a late to (iii) Carbene carbon The correct statement/s is/are | gh oxidation state. ransition metal. | her-carbenes. | | | | | | | 1) (ii) only | 2) (i) and (ii)1 | n de seesen de la de
La decembra de la de | | | | | | | 4) (i) and (iii) only | 2) (i) and (ii) only5) (i), (ii) and (iii) | _ | 3) (ii) and (iii) o | nly | | | | | | | | | | | | | THE OPEN UNIVERSITY OF SRI LANKA B. No DEGREE PROGRAMME 2013/2014 CMUM122/CMEM122 - ORGANOMETALLIC CHEMISTRY- LEVEL 5 ANNIGNMENT TEST-I (Part A) MCO ANNWEIT SHEET: Mark a cross (X) over the most suitable answer. | | | | | | | | | | | | | | | | | | Pa | rt A | | | |-------|------|------|--|-----|-------|-----|-----|-------|------|-----|-----|-----|-----|------|------------------|---|-----|------|---|--| | Roy I | ю, | | | | | | | | | For | Exa | min | ers | Use | | | Pa | rt B | | | | | | Last | e de la composição l | | , | N. | | | 1 | 4 | | | | | | | Tot | al % | | | | | | | | | | | | | | | | | | Marl | cs | | | | | | | | | | | | Co | orr | ect | t Ans | swer | s | | | | | | | | | | | | | | | | | W: | ron | g A | Answe | ers | | | | | | | | | | | | | | | | | | To | ota | 1. | 1, | 1 | 1.9 | | | 4 | 5 | | 2. | 1 | 2 | 3 | 4 | 5 | 3. | 1 | 2 | 3 | 4 | 5 | | | | 1000 | | | · | , and | | J | | L | | | _ | | J | | | 1 | | | | | 4. | |] 2 | | | 4 | 5 | | 5. | 1 | 2 | 3 | 4 | 5 | 6. | 1 | 2 | 3 | 4 | 5 | | | | | | | | | | - | | | | | | | | | | | | | | | 7. | İ |] 2 | | | 4 | 5 | | 8. | 1 | 2 | 3 | 4 | 5 | 9. | 1 | 2 | 3 | 4 | 5 | | | | | | | | | | | | | | | | | | Section Fillings | | | | | | | 10. | | 2 | | 1 / | 1 | 5 | | 11. | 1 | 2 | 3 | 4 | 5 | 12. | 1 | 2 | 3 | 4 | 5 | 1.1 | 1 | 19 | | 1 4 | l | 5 | | 14. | 1 | 2 | 3 | 4 | 5 | 15. | 1 | 2 | 3 | 4 | 5 | | ## Part B (55 marks) Answer all the questions in the space provided. Attached sheets will not be graded. 1. (a) Give the IUPAC name for [FeCl₂(η^2 -C₂H₄)(η^6 -C₆H₆)]. (b) Draw the structure of [FeCl₂(η^2 -C₂H₄)(η^6 -C₆H₆)]. (c) Determine the VEC of Fe in [FeCl₂(η^2 -C₂H₄)(η^5 -C₅H₅)] using covalent model. (Indicate your break down; Group number of Fe is 8) (d) Determine the coordination number of Cr in [CrBr(η^3 -C₃H₅)(CO)₂(η^4 -C₄H₄)]. (e) Draw the structures of geometrical isomers of [FeCl3(PF1)(CO)2]. (f) Arrange NMe₃, NH₃, N₂ and H₂O in the order of increasing σ -donor ability.