The Open University of Sri Lanka
B.Sc./B.Ed. Degree, Continuing Education Programme
Open Book Test (OBT) - 2024/2025
Level 4 - Applied Mathematics
ADU4301 - Newtonian Mechanics I



Date: 09-02-2025

Time: 10:30 a.m. To 11:30 a.m.

## Answer All Questions.

1. A particle is projected with velocity u at an angle  $\alpha$  to the horizontal in a medium whose esistance per unit mass is kv where v is the speed of the particle. If R is the range or the horizontal plane through the point of projection, and T is the time of flight, prove that

$$kR\left(ktan\alpha + \frac{g}{u}\sec\alpha\right) + g\ln\left(1 - \frac{kR}{u}\sec\alpha\right) = 0 \text{ and } T = \frac{1}{k}\ln\left(\frac{u}{u - kR\sec\alpha}\right).$$

2. A particle, P moves round the circle whose polar equation is  $r = 2a\cos\theta$ ,

 $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$ , where a is a positive constant. It moves so that its acceleration has no transverse component. Show that

- (a)  $\dot{r}$  is proportional to  $\frac{\sin \theta}{r^2}$ .
- (b) the radial acceleration is proportional to  $\frac{1}{r^5}$ .

3. A smooth wire in the form of an arch of the cycloid, with intrinsic equation  $s = 4a \sin \psi$ ,

 $\frac{\pi}{2} \le \psi \le \frac{\pi}{2}$ , where a is a positive constant. The wire is fixed in a vertical plane with its axis vertical and its vertex  $\theta$  at its lowest point. A bead P of mass m, moves under gravity on this wire. Given that the bead is projected from the vertex  $\theta$  with speed  $2\sqrt{ag}$ , show that when P reaches the point at which the tangent is inclined at an angle  $\theta$  to the horizontal:

- (a) its speed is  $2\sqrt{ag}\cos\theta$ .
- (b) the normal contact force exerted by the wire n thr bead is  $2mg\cos\theta$ .