The Open University of Sri Lanka

B.Sc/B.Ed. DEGREE, CONTINUING EDUCATION PROGRAMME

Open Book Test 2024/2025

Level 03 Pure Mathematics

PEU3202- Vector Spaces

Duration: - One hour

Date: -09-02-2025

Time: 4.00 -5.00 p.m.

Answer all questions

1.

- (a) Let $V = \{ (a_1, a_2) \mid a_1, a_2 \in \mathbb{R} \}$. For every $(a_1, a_2), (b_1, b_2) \in V$, define $(a_1, a_2) + (b_1, b_2) = (a_1 + b_1, a_2 + b_2)$ and $c(a_1, a_2) = (ca_1, ca_2)$ for $c \in \mathbb{C}$ where \mathbb{C} is the complex number field. Is V a vector space over the field of complex numbers under these operations? Justify your answer.
- (b) Let $V = \{(a_1, a_2) \mid a_1, a_2 \in \mathbb{R}\}$ For every $(a_1, a_2), (b_1, b_2) \in V$ define $(a_1, a_2) + (b_1, b_2) = (2a_1 + b_1, a_2 + 3b_2)$ and $c(a_1, a_2) = (ca_1, ca_2)$ for $c \in \mathbb{R}$ where \mathbb{R} is the field of real numbers. Is V a vector space over the field of real numbers under these operations? Justify your answer.
- (c) Determine whether the set $A = \{(a+2b, a+1) \mid a, b \in \mathbb{R}\}$ is a subspace of the vector space \mathbb{R}^2 over the field \mathbb{R} under usual addition and scalar multiplication.
- (d) Let $S = \{P_1 = 1 x, P_2 = 5 + 3x 2x^2, P_3 = 1 + 3x x^2\}$ be a subset of the vector space of all polynomials of degree at most 2 over \mathbb{R} . Is S linearly independent over the field \mathbb{R} ? Justify your answer.

2.

Let $M = \{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} | a, b, c, d \in \mathbb{R} \}$. Note that M is a vector space over the field \mathbb{R} under the usual matrix addition and scalar multiplication.

Let the mapping $T: M \to M$ be defined by $T(\begin{bmatrix} a & b \\ c & d \end{bmatrix}) = \begin{bmatrix} a+d & b+c \\ c & c+d \end{bmatrix}$.

- (i) Show that T is a linear transformation
- (ii) Find the kernel of T.
- (iii) Is T an isomorphism? Justify your Answer.