

Final Examination 2024/2025

The Open University of Sri Lanka

Level 03 Pure Mathematics

PEU3202/PEE3202 Vector Spaces

Duration: - Two Hours

Time: 1.30 p.m. to 3.30 p.m. Date: - 15-05-2025

Answer four questions only

1.

- Suppose V is a vector space over a field F. Prove that for all $\alpha \in F$ and for all $x \in V \{0\}$ (a)
 - If $\alpha \cdot x = 0$ then $\alpha = 0$
 - If $\alpha \cdot x = \beta \cdot x$ then $\alpha = \beta$ (ii)
- (b) Let $M = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \middle| a, b, c, d \in \mathbb{R} \right\}$. For every $\begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix}$, $\begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix} \in M$,

define the two operations on M as follows:

$$\begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix} + \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix} = \begin{bmatrix} a_1 + a_2 & b_1 + b_2 \\ c_1 + c_2 & d_1 + d_2 \end{bmatrix} \text{ and } \alpha \begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix} = \begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix}$$

for $\alpha \in \mathbb{R}$, where \mathbb{R} is the real number field. Is M a vector space over the field of real numbers under these operations? Justify your answer.

- Is the set of three vectors $u_1 = (1, 2, 2)$, $u_2 = (-1, -1, -2)$ and $u_3 = (1, 0, 1)$ form a basis of (c) \mathbb{R}^3 ? Justify your answer.
- Let $S = \{P_1 = 1 x, P_2 = 5 + 2x^2, P_3 = -3 + 3x x^2\}$ be a subset of the vector space of all (d) polynomials of degree at most 2 over \mathbb{R} . Is S linearly independent over the field \mathbb{R}^n Justify your answer.

2.

Let V be a vector space over the field F and $W \subseteq V$, $W \neq \phi$. Show that W is a subspace of a vector space-V over F if and only if for all $\alpha, \beta \in F$ and $x, y \in W$. $\alpha x + \beta y \in W$.

- (b) Determine whether following sets are subspaces of the vector space \mathbb{R}^3 over the field \mathbb{R} under usual addition and scalar multiplication in vector space \mathbb{R}^3 . In each case justify your answer.
 - (i) $A = \{(a, b, c) \mid a, b, c \in \mathbb{R} \text{ and } b = 2a + c^2\}$
 - (ii) $B = \{(a, b, c) \mid a, b \in \mathbb{R} \text{ and } a = b = c \}$
- (c) Suppose W_1 and W_2 are subspaces of a vector space V over a field F. Prove that $W_1 \cap W_2$ is a subspace of the vector space V over the field F.

3.

- Suppose V is a vector space over the field F. Show that if $b \in V$ is a linear combination of the set of vectors $a_1, a_2, \ldots, a_n \in V$, then the set $\{b, a_1, a_2, \ldots, a_n\}$ is linearly dependent in V.
- (b) If a, b and c are linearly independent vectors in V over a field F,

 Are the vectors a b, b c, c a linearly independent? Justify the answer.
- (c) Suppose W is a subspace of a finite dimensional vector space V over the field F, then prove that dim $W = \dim V$ if and only if W = V
- (d) Let $W = \{(1, 1, -2,0), (2, 1, -3,0), (-1, 0, 1,0), (0, 1, -1,0)\}$. Find a basis for the subspace $Sp < W > \text{of } \mathbb{R}^4$

4.

N

- (a) Let $T: V \to W$ be a linear transformation, where V and W are vector spaces. Show that
 - (i) $\ker T$ is a subspace of V, and
 - (ii) $\ker T = \{0\}$ if and only if T is one to one.
- (b) Let $V = \mathbb{R}^2$ and $W = \mathbb{R}^3$. Assume that V and W are vector spaces over the field \mathbb{R} under the usual addition and scalar multiplication.

Consider the mapping $T: V \to W$ defined by T(x,y) = (2x, 2x + y, x + 2y).

- (i) Show that T is a linear transformation.
- (ii) Find the kernel of T.
- (iii) Is T an Isomorphism? Justify your answer.

5.

(a) Let $\mathbb{R}^4 = \{(a, b, c, d) \mid a, b, c, d \in \mathbb{R} \}$ be the vector space over the field \mathbb{R} under the usual addition and scalar multiplication.

Let the mapping $T: \mathbb{R}^4 \to \mathbb{R}^4$ be defined by T((a,b,c,d) = (a+b,b,3c,c+d). Assuming that T is a linear Transformation, determine whether the following sets are invariant subspaces of the vector space \mathbb{R}^4 over the field \mathbb{R} under T.

(i)
$$W = \{ (a, b, 0, 0) | a, b \in \mathbb{R} \}$$

(ii)
$$W = \{ (a, 0, 0, b) | a, b \in \mathbb{R} \}$$

(b)

- (i) Define an inner product space.
- (ii) Let V be an inner product space over a field F. Prove that for $x_1, x_2, y_1, y_2 \in V$, $\langle x_1 + x_2, y_1 + y_2 \rangle = \langle x_1, y_1 \rangle + \langle x_1, y_2 \rangle + \langle x_2, y_1 \rangle + \langle x_2, y_2 \rangle$
- (iii) Let $u=(x_1,x_2,x_3)$, $v=(y_1,y_2,y_3)$ where $u,v\in\mathbb{R}^3$.

 Define $< u,v>=x_1^2-x_2^2-x_1x_3$. Is < u,v> an inner product on \mathbb{R}^3 ?

 Justify your answer.

6.

N

- (a) Let u and v be any two vectors of a Euclidian Space.
 - (i) Prove that $||u + v|| \le ||u|| + ||v||$
 - (ii) Define the angle between u and v
 - (iii) Suppose E^3 be the usual Euclidian three-space and $u, v \in E^3$ Let u = (1, -1, 2) and v = (2, 1, 0). Find the angle between u and v
- (b) Show that the three vectors $u_1 = (0,1,1)$, $u_2 = (0,01)$ and $u_3 = (1,0,-1)$ form a basis for E^3 , the usual Euclidean three-space. Construct an orthogonal basis for E^3 out of $\{u_1, u_2, u_3\}$ using the Gram-Schmidt process.