The Open University of Sri Lanka B.Sc./ B.Ed. Degree Programme Final Examination - 2024/2025 Applied Mathematics - Level 05 ADU5306 - Fluid Mechanics

DURATION: TWO HOUR

Date: 22.05.2025 Time: 9.30 a.m. to 11.30 a.m.

Answer FOUR questions only.

- 1. (a) By considering the equilibrium of an arbitrary volume V of fluid at rest, derive the equation of equilibrium in the form $\rho F = \operatorname{grad} p$.
 - (b) A mass of incompressible gas extends from infinity to the surface of a rigid sphere r=a. The temperature being constant, the pressure p and density ρ of the gas are related by an equation of the form $p=K\rho$ where K is a constant. The external force per unit mass at a point P is given by $\underline{F}=-\frac{\mu r}{r^3}$, where μ is a positive constant and $\underline{r}=x\underline{i}+y\underline{j}+z\underline{k}$ is the position vector of point P with respect to O, its magnitude being denoted by r. Show that the pressure exerted on the surface of the sphere is $p=p_0e^{\frac{R}{k}a}$; where p_0 is the pressure at infinity.
- 2. (a) Derive the continuity equation of the form $\frac{D\rho}{Dt} + \rho \operatorname{div}(\underline{q}) = 0$, for any arbitrary control volume of a moving fluid irrespective of its shape and size. \underline{q} and ρ fluid velocity and fluid density respectively.
 - (b) Hence deduce the continuity equation, for an incompressible fluid in terms of Cartesian Coordinate.
 - (c) Consider the fluid flow field which is given by $\underline{q} = x^2 y \underline{i} + y^2 z \underline{j} (2xyz + yz^2)\underline{k}$. Prove that this is a case of a positible incompressible flow field.
 - (d) Given $v = 2y^2$ and w = 2xyz, the two velocity components. Determine the third component such that it satisfies the continuity equation.
- 3. (a) Given Euler's equation of motion $\underline{F} \frac{1}{\rho} \operatorname{grad} p = \frac{D\underline{q}}{D\overline{t}}$ for a perfect fluid, show that it can be written in the form $\underline{F} \frac{1}{\rho} \operatorname{grad} p = \frac{\partial \underline{q}}{\partial t} + \operatorname{grad} \left(\frac{q^2}{2}\right) \underline{q} \times \operatorname{curl} \underline{q}$.
 - (b) Using the result in Part (a), derive Bernoulli's equation for irrotational motion of an inviscid homogeneous fluid of constant density.

- (c) Consider a horizontal nozzle discharging into the atmosphere. The inlet has a bore area of 500mm^2 and the exit has a bore area of 250mm^2 . Assuming there is no energy loss calculate the flow rate when the inlet pressure is $400 \ Pa$.
- 4. A stream of liquid has velocity V at infinity in the negative x-direction, the sphere r=2, being a rigid boundary. Moreover the velocity potential of the flow is given by $\phi=V\left(r+\frac{4}{r^2}cos\theta\right)$.
 - (a) Derive the components of velocity and hence obtain the stream function. $\left(\text{Hint: } -\frac{\partial \phi}{\partial r} = q_r = -\frac{1}{r^2 \sin \theta} \frac{\partial \psi}{\partial \theta} \text{ and } -\frac{1}{r} \frac{\partial \phi}{\partial \theta} = q_\theta = \frac{1}{r \sin \theta} \frac{\partial \phi}{\partial r} \right).$
 - (b) Find thee equation of a streamline which is at a distance a from the axis, at infinity, and show that such a streamline meets the plane $\theta = \frac{\pi}{2}$, at a point where r = b, given by $\left(b^2 \frac{8}{b}\right) = a^2$.
- 5. The complex potential of a fluid flow is given by $W(z) = U\left(z + \frac{4}{z}\right)$ where U is positive constant.
 - (a) Obtain the equation for the streamlines and velocity potential lines and represent them graphically.
 - (b) Find the complex velocity at any point and determine its value far from the origin.
 - (c) Find the stagnation points of the flow.
- 6. The components of fluid velocity \underline{q} , in terms of cylindrical polar coordinates r, θ, z are $-U\left(1-\frac{a^2}{r^2}\right)\cos\theta$, $U\left(1+\frac{a^2}{r^2}\right)\sin\theta$, 0 respectively.
 - (a) Verify that this velocity represents irrotational motion of an incompressible fluid, and find the velocity potential.
 - (b) Describe the behaviour of velocity on the surface of the cylinder r=a and at infinity.
