THE OPEN UNIVERSITY OF SRI LANKA

BACHELOR OF SCIENCE DEGREE PROGRAMME - LEVEL 05

FINAL EXAMINATION - 2024/2025

PHU 5313 - ADVANCED ELECTROMAGNETISM

Duration: TWO (02) HOURS

Date 30th April 2025

Time 9.30 am - 11.30 am

$$C = 2.99 \times 10^8 \text{ ms}^{-1}$$
, $\epsilon_0 = 8.85 \times 10^{-12} \text{ Fm}^{-1}$, $\mu_0 = 4\pi \times 10^{-7} \text{ Hm}^{-1}$

Answer any Four (04) questions only

1. In vector calculus, the Del operator is a vector differential operator used to define operations such as gradient, divergence, and curl. In Cartesian coordinates, it is defined as:

$$\vec{\nabla} = \frac{\partial}{\partial x}\hat{\imath} + \frac{\partial}{\partial y}\hat{\jmath} + \frac{\partial}{\partial z}\hat{k}$$

- (a) Define the following operations using the Del operator and state whether the resultant is a scalar or a vector:
 - i. Gradient of a scalar field
 - ii. Divergence of a vector field
 - iii. Curl of a vector field

[5 marks]

- (b) Given the scalar field $\phi(x, y, z) = xy^2 + z^2$, find the gradient $\vec{\nabla} \phi$.
- [4 marks]
- (c) Let $\vec{F}(x, y, z) = x^2 \hat{\imath} + yz \hat{\jmath} + z^2 \hat{k}$. Find the divergence. $\nabla \cdot \vec{F}$.

[4 marks]

- (d) For the vector field $\vec{A}(x,y,z) = yz\hat{\imath} + x\hat{\jmath} + y\hat{k}$, calculate the curl $\vec{\nabla} \times \vec{A}$.
- [6 marks]
- (e) In electromagnetism, the magnetic field \vec{B} is defined as the curl of a vector potential $\vec{B} = \vec{\nabla} \times \vec{A}$. Using the identity $\vec{\nabla} \cdot (\vec{\nabla} \times \vec{A}) = 0$, explain why the divergence of the magnetic field is zero.

What does this imply about the existence of magnetic monopoles?

[6 marks]

- 2. Let $\vec{A}(x,y,z) = (xy + yz + zx)$ and $\vec{B}(x,y,z) = (x + y + z)$ be vector fields, and let $\phi(x,y,z) = xyz$ be a scalar field.
 - (a) Verify the vector identity: $\nabla \cdot (\vec{A} \times \vec{B}) = \vec{B} \cdot (\nabla \times \vec{A}) \vec{A} \cdot (\nabla \times \vec{B})$ [5 marks]
 - (b) Prove the identity: $\nabla \times (\phi \vec{A}) = \phi(\nabla \times \vec{A}) + (\nabla \phi) \times \vec{A}$ [5 marks]
 - (c) Using the identity: $\nabla \cdot (\phi \vec{A}) = \phi(\nabla \cdot \vec{A}) + \vec{A} \cdot (\nabla \phi)$. compute both sides explicitly and verify the result. [5 marks]
 - (d) Show that the curl of the gradient of any scalar field is zero: $\nabla \times (\nabla \phi) = 0$ Then verify this result for $\phi(x, y, z) = x^2y + yz^2$. [5 marks]
 - (e) In electromagnetism, Maxwell's equation $\nabla \cdot (\nabla \times \vec{B}) = 0$ holds for any magnetic field \vec{B} . Explain why this identity is always true using vector calculus. What fundamental physical principle does this represent in Maxwell's theory? [5 marks]
- 3. (a) State the Divergence Theorem and explain briefly what physical quantity it helps to calculate in a vector field. [4 marks]
 - (b) Let $\vec{F}(x, y, z) = (x + y + z)$. Use the Divergence Theorem to evaluate the outward flux of \vec{F} across the surface of the sphere $x^2 + y^2 + z^2 = 1$. [6 marks]
 - (c) State Stokes' Theorem and describe how it relates to a vector field. [4 marks]
 - (d) Let $\vec{F}(x, y, z) = (-y + x, 0)$, and let S be the upper surface of the unit disk $x^2 + y^2 \le 1$ in the xy-plane. Use Stokes' Theorem to evaluate the line integral $\oint_C \vec{F} \cdot d\vec{r}$, where C is the boundary of S oriented counter-clockwise.
 - (e) One of Maxwell's equations in differential form is: $\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$. Using Stokes' Theorem. explain how this equation relates a changing magnetic field to the induced electric field in a loop. Briefly describe a physical situation where this occurs. [5 marks]

- 4. (a) A point charge +Q is located at the origin. Write down the expression for the electric field $\vec{E}(\vec{r})$ at a distance r from the origin in vacuum. Indicate the direction of the field. [4 marks]
 - (b) State the expression for the electric potential $V(\vec{r})$ at a point due to a continuous charge distribution $\rho(\vec{r}')$ in vacuum. [4 marks]
 - (c) Given the electric potential V(x, y, z), derive the expression for the electric field $\vec{E}(x, y, z)$ in terms of V. [4 marks]
 - (d) A charge q is moved from point A to point B in an electrostatic field. Show that the work done is independent of the path and express it in terms of the electric potential difference between A and B. [5 marks]
 - (e) Two different charge distributions, ρ_1 and ρ_2 , are placed in the same volume V, giving rise to potentials V_1 and V_2 , respectively. Use Green's Reciprocation Theorem to relate:

$$\int_{V} \rho_1(\vec{r}) V_2(\vec{r}) dv$$
 and $\int_{V} \rho_2(\vec{r}) V_1(\vec{r}) dv$

Then, use this theorem to compute the potential at the location of a grounded conducting sphere of radius R caused by a nearby point charge q placed at a distance d > R from the center.

[8 marks]

- 5. (a) State Laplace's equation in three dimensions. Briefly explain the physical situations where Laplace's equation is applicable in electrostatics. [4 marks]
 - (b) State the uniqueness theorem for Laplace's equation. Why is it important in solving boundary value problems? [4 marks]
 - (c) Let V(x, y, z) satisfy Laplace's equation in a region R. Show that V has no local maxima or minima inside R, unless it is constant. [4 marks]
 - (d) A rectangular 2D region is defined for $0 \le x \le a$ and $0 \le y \le b$. The potential on three sides of the rectangle is zero, and on the side y = b, the potential is given by $V(x, b) = V_0 \sin\left(\frac{\pi x}{a}\right)$

Write down the boundary conditions for Laplace's equation in this region. [4 marks]

(e) Solve Laplace's equation for the region described in part (d) using the method of separation of variables. Find the potential V(x, y) in the rectangle. [9 marks]

- 6.(a) Write down Maxwell's four equations in integral form and briefly explain the physical meaning of each. [6 marks]
 - (b) Define displacement current and explain its necessity.Write down the modified Ampère's Law with the displacement current term. [4 marks]
 - (c) What does Gauss's Law for magnetism state? What does this imply about the existence of magnetic monopoles? [3 marks]
 - (d) Show how Maxwell's equations in vacuum lead to the wave equation for the electric field \vec{E} .

 [6 marks]
 - (e) An electromagnetic wave travels in vacuum along the positive z direction. Its electric field is given by, $\vec{E}(z,t) = E_0 \cos(kz \omega t) \hat{x}$

Use Maxwell's equations to find the associated magnetic field $\vec{B}(z,t)$ Confirm that your result satisfies one of Maxwell's equations. [6 marks]

16