The Open University of Sri Lanka
B.Sc./B.Ed Degree Programme – Level 04
Final Examination 2009/2010
Pure Mathematics
PMU 2191/PME 4191 – Vector Analysis

Duration :- Two and Half (2 1/2) Hours.

Date :- 05-01-2010.

Time: 1.00 p.m. - 3.30 p.m.

Answer Four Questions Only.

1. (a) If $\sin u = \frac{x^2 + y^2}{x + y}$, show that

(i)
$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \tan u$$
 and

(ii)
$$x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = \tan^3 u$$
.

- (b) Using linear approximation obtain an approximate value for the real number, $7.96\sqrt{9.99 (1.01)^2}$.
- (c) Find the Taylor's expansion of $f(x, y) = e^{y} \ln(1+x)$ about the point (0, 0), up to 2^{nd} order terms.
- 2. (a) (i) Define a stationary point of a single valued function f(x, y), defined over the domain D. Explain briefly how you would determine its nature.
 - (ii) Find the maximum and minimum values of the function $f(x, y) = x^3 + 3xy^2 15x^2 15y^2 + 72x$ and determine their nature.
 - (b) It is given that the directional derivative of $f(x, y, z) = axy^2 + byz + cz^2x^3$ at (1, 2, -1) has a maximum of magnitude 64 in a direction parallel to z-axis. Show that a = 6, b = 24 and c = -8.
 - (c) The surface $ax^2 byz = (a+2)x$ is orthogonal to the surface $4x^2y + z^3 = 4$ at the point (1, -1, 2). Find the constants a and b.

- 3. (a) Find the value of the surface integral of the function $f(x, y) = y^2/x^2$ over the region bounded by y = x, x = 1 and y = 2.
 - **(b)** Evaluate $\int_S e^{x^2+y^2} dA$, where S is finite region in the 1st quadrant bounded by $x^2 + y^2 = a^2$, y = 0, and x = 0.
 - (c) Find the volume integral of the function $f(x, y, z) = x^2 + y^2$ over the region bounded by the surfaces $z = x^2 + y^2$, x = 0, y = 0 and z = 1.
- **4.** Let $U = x^2 + y^2 + z^2$ be a scalar field and S be the finite (closed) surface of the cylinder bounded by $x^2 + y^2 = a^2$, z = 0, and z = h. Compute Surface integral $\int_S U\underline{n} \, dS$ over the cylinder where \underline{n} is a unit vector normal to the surface S.

Hence verify that $\int_{S} U\underline{n} dS = \int_{V} grad U dV$ where V is the finite volume enclosed by S.

- 5. (a) State Gauss' divergence theorem, stating the meanings of any symbols used...
 - (b) Verify Gauss' divergence theorem for the vector field $\underline{F} = z^3 \underline{k}$, considering the region enclosed by the surface S of a sphere of radius R with centre at the origin.
 - (c) Prove that (i) $\nabla \cdot \underline{r} = 3$, the usual meaning.
- (ii) $\nabla \cdot \left(\frac{\underline{r}}{r^2}\right) = \frac{1}{r^2} (r \neq 0)$ where \underline{r} carries
- 6. (a) State Stokes' theorem, stating the meanings of any symbols used.
 - (b) Verify Stokes' theorem for the vector field $\underline{F} = -y^3 \underline{i} + x^3 \underline{j}$ for the case of a circle of radius R with centre at the origin.
 - (c) Prove that vector field $\underline{A} = (6xy + z^3)\underline{i} + (3x^2 z)\underline{j} + (3xz^2 y)\underline{k}$ is irrotational and find a scalar function such that $\underline{A} = \nabla f$.