ic

re

f

The Open University of Sri Lanka

B.Sc Degree Programme/Continuing Education Programme

Final examination -2009/2010

AMU 2181/AME4181-Mathematical Modeling I

Level 04-Applied Mathematics

Duration:- Two and Half Hours.

Date:-21/01/2010

Time:-9.30 a.m.-12.00 noon.

Answer Four Questions.

(01)(i) What are the essential characteristics of a linear programming model?

- (ii) The ABC Electric Appliance Company produces two products: refrigerators and ranges. Production takes place in two separate departments. Refrigerators are produced in department I and ranges are produced in department II. The company's two products are produced and sold on a weekly basis. The weekly production cannot exceed 25 refrigerators in department I and 35 ranges in department II, because of limited available facilities in the two departments. The company regularly employs a total of 60 workers in the two depts. A refrigerator requires 2 man-weeks of labour, while a range requires 1 man-week of labour. A refrigerator contributes a profit of Rs. 60 and a range contributes a profit of Rs.40. Formulate the problem as a linear programming problem. How many units of refrigerators and ranges should be the company produce to realize a maximum profit?
- (02) (i) Solve the following problem by simplex method.

Max
$$Z = 2x_1 + 4x_2 + x_3 + x_4$$

subject to $x_1 + 3x_2 + x_4 \le 4$
 $2x_1 + x_2 \le 3$
 $x_2 + 4x_3 + x_4 \le 3$
 $x_i \ge 0, (i = 1, 2, 3, 4)$

(ii) Show that the following problem has an unbounded optimal solution.

Max
$$Z = 2x_1 + x_2$$

subject to $x_1 - x_2 \le 10$
 $2x_1 - x_2 \le 40$
 $x_1, x_2 \ge 0$

(03) Solve the following problem using Big- M method.

Minimize
$$Z = 4x_1 + x_2$$

subject to $3x_1 + x_2 = 3$
 $4x_1 + 3x_2 \ge 6$
 $x_1 + 3x_2 \le 3$
 $x_1, x_2 \ge 0$

Verify the solution using the graphical approach.

(04) Consider the following primal problem:

Minimize
$$Z = 3x_1 + 15x_2 + 5x_3 + 6x_4$$

Subject to $x_1 + 6x_2 + 3x_3 + x_4 \ge 2$
 $-2x_1 + 5x_2 - x_3 + 3x_4 \ge -3$
 $x_1, x_2, x_3, x_4 \ge 0$

- (i) Give the dual linear problem and hence solve.
- (ii) Obtain the optimal solution to the primal problem using the optimal solution to the dual problem.

(05) Consider the following problem.

Maximize
$$Z = 6x_1 + 8x_2$$

Subject to
 $5x_1 + 10x_2 \le 60$
 $4x_1 + 4x_2 \le 40$
 $x_1, x_2 \ge 0$

The optimum simplex table for the above problem is given below:

Basic variable	X_1	X ₂	S_1	S ₂	solution
X_2	0	1	1/5	-1/4	2
X_1	1	0	-1/5	1/2	8
-Z	0	0	-2/5	-1	-64

Hence, write the optimum solution to the problem,

- (i) if the right-hand side constants of constraint 1 and constraint 2 change from 60 and 40 to 40 and 20, respectively.
- (ii) if the right-hand side constants of the constraints change from 60 and 40 to 20 and 40 respectively.

(06) Consider the following problem:

Maximize
$$Z = 10x_1 + 15x_2 + 20x_3$$

 $2x_1 + 4x_2 + 6x_3 \le 24$
 $3x_1 + 9x_2 + 6x_3 \le 30$
 $x_1, x_2, x_3 \ge 0$

The optimum table of the above problem is given below.

Basic variable	X ₁	X ₂	X ₃	S ₁	S ₂	solution
X ₃	0	-1	1	1/2	-1/3	2
$\overline{X_1}$	1	5	0	-1	1	6
-Z	0	-15	0	0	-10/3	-100

- (i) Find the range of the objective function coefficient C_1 of the variable x_1 such that the optimality is unaffected.
- (ii) Find the range of the objective function coefficient C_2 of the variable x_2 such that the optimality is unaffected.
- (iii) Check whether the optimality is affected, if the profit coefficients change from (10,15,20) to (7,14,15). If so, find the revised optimum solution.