The Open University of Sri Lanka **Faculty of Natural Sciences** B.Sc/ B. Ed Degree Programme

Department

: Botany

Level

: Level 5

: Final Examination

Name of the Examination Course Title and - Code

: Plant Breeding (BYU5306/BYE5306)

Academic Year

: 2024/2025

Date

: 29.05.2025

Time

: 1.30 - 3.30 pm

Duration

: 02 hours

General Instructions

- 1. Read all instructions carefully before answering the questions.
- 2. This question paper consists of 06 questions in 04 pages.
- 3. Answer any 04 questions only. All questions carry equal marks.
- 4. Answer for each question should commence from a new page.
- 5. Draw fully labelled diagrams where necessary
- 6. Involvement in any activity that is considered as an exam offense will lead to punishment.
- 7. Use blue or black ink to answer the questions.
- 8. Clearly state your index number in your answer script.

- (A) Gene frequency, also known as allele frequency, refers to the proportion of a specific allele at a particular gene locus in a population.
 - i) What are the factors which affect the change in gene frequencies? Explain briefly.
 - ii) The following data refers to the frequency of a allele, controlling bacterial resistance in tea

Frequency of allele a in Low-country tea clones in Sri Lanka – 0.60 Frequency of allele a in Mid-country tea clones in Sri Lanka – 0.43 Frequency of allele a in Up-country tea clones in Sri Lanka – 0.01

Calculate the total proportion (m) alleles that have entered the Mid-country tea clone population in Sri Lanka.

(B) Mutations are the original source of genetic variation.

1.

- i) There are two types of mutations. What are they? Briefly explain.
- ii) At a particular locus which controls the Pod length, there are two alleles, L and l. The mutation rate of L to l is 3.2×10^{-5} , whereas the mutation rate of l to L is 6.4×10^{-7} . Allele frequency (p) of L is 0.6.

Assumption: No other factor is operating in the population to disturb the equilibrium.

What is the equilibrium frequency of *l* allele?

- 2. A breeding program is set up to improve certain characteristics in a crop.
 - a) There are certain strategic perspectives to be considered when planning a breeding programme. What are they?
 - b) There are five major factors affecting the selection methods in a breeding programme. What are they? Briefly Explain.
 - c) What is Hybrid Vigour? Briefly explain.
 - d) Explain briefly how Hybrid Vigour is utilized in a breeding programme.

- 3. Average effect (a), Breeding value (A) and Dominance deviation (D) are important components of population genetics.
 - a) Briefly explain, the Average effect (α). Breeding value (A) and Dominance deviation (D).
 - b) The wing length (*l*) in *Drosophila* is a quantitative trait.

 The wing length of three genotypes in *Drosophila* at 4 weeks of age are as follows:

	Genotypes			
	++	+1	11	
Wing length in mm	12	10	7	

Find out the average effects of the genes. (Assume allele frequency (q) of l is 0.4).

c) Gene frequencies of three genotypes in three sample populations, x, y and z are as follows.

What are the Breeding Values (A) of these genotypes in the population?

(Hint: take the average)

(Gene frequency of allele A (p) is 0.4).

Genotype	Frequencies		
	Population x	Population y	Population 2
AA	0.02	0.17	0.50
AB	0.22	0.44	0.23
ВВ	0.43	0.10	0.07

- 4.
- a) Several factors determine the reproductive behavior of plants.
 - i) What are the factors that determine whether a plant is predominantly self-pollinated or predominantly cross-pollinated?
 - ii) Give a brief account of each factor.
- b) Differentiate between inbreeding and outbreeding, explaining the consequences of each.
- c) What is self-incompatibility?
- d) Briefly explain the terms 'Gametophytic self-incompatibility' and 'Sporophytic self-incompatibility'.

- 5. The choice of breeding methods for a crop depends on its mode of reproduction and flower morphology, as these are critical factors.
 - a) Based on these characteristics, plant breeders categorize crops into four fundamental population types. What are they? Briefly explain.
 - b) Selection and Hybridization are the two main approaches of breeding self-pollinated crops.
 - i) Briefly explain the Selection procedure used for self-pollinated crops.
 - ii) Give a comparison between Mass Selection and Pure Line Selection procedure.
 - iii) Briefly explain the Hybridization procedure practiced in self-pollinated crops.
 - iv) Several methods are used in Hybridization of self-pollinated crops. What are they?
 - c) Selection and Hybridization are also used in breeding cross-pollinated crops.
 - i) Give an account of the genetic structure of cross-pollinated crops.
 - ii) Several types of Selection methods are practiced for cross pollinated crops. What are they?
 - iii) Hybridization in cross-pollinated crops aims to identify heterotic crosses, typically involving the crossing of two or more inbreds. There are four main types of crosses. What are they?

6.

(A)

- a) What are the uses of tissue culture techniques in plant breeding?
- b) Embryo rescue is one of the applications of tissue culture in plant breeding. Explain what embryo rescue is, and describe its use/s.
- c) Somoclonal variations are often found among plants which have been propagated through tissue culture.
 - i) What is somoclonal variation?
 - ii) Explain how somaclonal variation can be utilized for crop improvement.

(B)

- a) Explain briefly what is understood by Genetic Engineering of plants.
- b) Describe how herbicide resistant plants are developed using biotechnology.
 - Copyrights Reserved -