The Open University of Sri Lanka
B.Sc./B.Ed. Degree Programme – Level 05
Final Examination – 2006/2007
Pure Mathematics
PMU 3292/PME 5292 – Group Theory & Transformation – Paper II

Duration:- Two and Half Hours

Date:- 12-11-2006

Time: - 1.00 p.m. - 3.30 p.m.

Answer Four Questions Only.

- 01. In each of the following, find the left coset of H in G.
 - (a) $(G, +_4)$ is the group of integers modulo 4 and $H = \{0\}$.
 - (b) $(G, +_{15})$ is the group of integers modulo 15 and $H = \{0, 3, 6, 9, 12\}$.
 - (c) $(G, +_{15})$ is the group of integers modulo 15, $H = \{0, 5, 10\}$.
 - (d) $(\{1, -1, i, -i\}, \cdot\})$ and $H = \{1, -1\}$.
- 02.(a) Suppose that N and M are two normal subgroups of G and that $N \cap M = \{e\}$ where e is the identity of G. Show that, for any $n \in N$, $m \in M$, $n \cdot m = m \cdot n$.
 - (b) If N is a normal subgroup of order 2 of a group G, then show that $N \subseteq Z(G)$, the center of G.
- 03. (a) Let H, K be normal subgroups of G. Prove that HK is a normal subgroup of G.
 - (b) Prove that a subgroup H of group G is a normal subgroup of G if and only if $xy \in H \Rightarrow yx \in H \ \forall x, y \in G$.
- 04. Consider the set G consisting of four permutations;

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}, \quad \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}.$$

Show that (G, o) is an abelian group.

05.(a) Express each of the following permutation as a product of disjoint cycles:

(i) (1 2 3)(1 2)

- (ii) (1 3 2 4)(1 2 3)
- (iii) (1 2 3)(4 5)(1 4 2 5 3)
- (iv) (1 2 3)(4 5)(1 5 3 4 2)

(b) Compute the product $T^{-1}ST$ for the following permutations T and S:

- (i) $T = (1 \ 2)$, $S = (1 \ 2 \ 3)$
- (ii) $T = (1 \ 3)(2 \ 4)$, $S = (1 \ 2 \ 3 \ 4)$
- (iii) $T = (1 \ 2 \ 3), S = (1 \ 2 \ 3 \ 4).$

06. Let $G = Z \times Z$ be a set and o be a binary operation on G defined by

$$(a, b) \circ (c, d) = (a + c, b + d).$$

- (a) Show that (G, o) is a group. What is the identity element of G.
- (b) Show that the mapping $f: G \to Z$ given by f(a, b) = a is a homomorphism from (G, o) onto (Z, +). What is kernel of f?
- (c) $H = \{(a, a) \mid a \in Z\}$. Prove that (H, o) is a subgroup of (G, o), and isomorphic to (Z, +) under the function f.