The Open University of Sri Lanka B.Sc. Degree Programme- Level 05 Department of Computer Science CSU 5305- Theory of Computing

Continuous Assessment Test-02 (CAT 02) 2024/25

Duration: One Hour Only (1 Hour)

Date: 21.03.2025	Time: 9.00 am-10.00 am		
	•		
Reg. Number:			

Important Instructions

- This paper has 25 questions on 05 pages.
- Answer all the questions.
- From question (01) (20) write your answers on the space provided on this question paper and (21)-(25), underline the correct answer on the question paper.
- No extra sheets will be provided.
- Questions appear on both sides of the paper.
- Last page (page 06) can be used as for rough work.
- Each question is allocated (04) marks.

Number of correct answ	vers
Total marks	
%	

(01) Write the Chomsky Hierarchy of Grammars including the order and the relevant name in the ascending order.

Order	Relevant Name		
	,		

- (02) When constructing a derivation tree for a given word in the language with the set of grammatical rules, what is represented by the root of the tree?
- (03) Construct the derivation for the string a+(a*a) with the grammar rules given below. **(Do not draw a derivation tree)**

2)
$$S \rightarrow S*S$$

3)
$$S \rightarrow (S)$$

4)
$$S \rightarrow a$$

- (04) Give another name for a derivation tree.
- (05) Give the definition of a State Transition System (STS).

(06)	How many transition systems have you studied under the course CSU 5305-Theory of Computing?							
(07)	Give the <u>names</u> of the transition systems as you mentioned in question (06).							
·								
(08)	A transition s α β γ	ystem is given below. ($ \begin{array}{c cc} 0 & 1 \\ \hline \beta & \alpha \\ \hline \alpha & \gamma \\ \hline \beta & \beta \end{array} $	Give a name to the tran	sition system.				
(09)	Regarding the columns?	e diagram given in q	uestion (08) what are	represented by rows and				
(10)		er essential features of a ne space provided below		Give the names of the four				
(11)	• Considering 1) 2)	the operation of an auto	omatic door what are th	ne two possible states?				
	And what are	the four input condition	ons?					
	1)	2)	3)	4)				

(12)What do you mean by a power of a machine? (Explain with one or two sentences) (13)Draw the pictorial representation of the memory of a computing device. Give the definition of a string and complement of a string. (14)(Warning: When giving the definition do not take an example to explain the definition. If you do so, **NO MARKS WILL BE GIVEN**) (15)For any language L, write the operations given below. a) $L - \phi = ?$ b) $\phi - L = ?$ c) $\phi L = ?$ d) $\{E\} L = ?$ If L is a language what is denoted by L^+ ? Give a name for L^+ . (16)(17)Are both the operations given below correct or not. (Do not give any justification) $\phi^* = \{ g \}$ £ }*= { E }

(18)	18) Write the languages of the regular expressions given below.					
	a) (((a+b) (b*)).	a)				
	b) ((a*) (b*))					
(19)	Write all strings over $\{0,1\}$, that do not contain 01.					
(20)	A grammar is given as <terminals: -="" a,b;="" b<br="" non="" production="" rules:="" s="" s;="" s→a,="" s→as,="" s→bs,="" terminals:=""></terminals:> Write the production rules in a more compact notation.					
(21)	Finite State Mac	Finite State Machine istuple machine.				
	a) 4	b) 5	c) 6	d) Unlimited		
(22)	Transition function of a machine maps to					
	a) ∑ x Q → ∑	b) Q x Q→∑	c) $\sum x \sum \rightarrow Q$	d) $Q \times \sum \rightarrow Q$		
(23)	An automation is made up of					
	a) States	b) Transitions	c) Both d)	None of the above answers		
(24)	In the theory of automation, how do you represent states?					
	a) by Squares	b) by Arcs	c) by Circles	d) by Arrows		
(25)		is a finite collection of symbols from the alphabet.				
	a) Switch	b) String	c) State	d) Letters		

All Rights Reserved