The Open University of Sri Lanka Faculty of Engineering Technology

Department of Electrical & Computer Engineering

Study Programme

: Bachelor of Technology Honours in Engineering

Name of the Examination

: Final Examination

Course Code and Title

: EEX6450 Analog Electronic Systems & Instrumentation

Academic Year

: 2021/2022

Date

: 28th February 2023

Time

: 1330-1630 hrs

Duration

: 3 hours

General Instructions

- 1. Read all instructions carefully before answering the questions.
- 2. This question paper consists of Five (5) questions in Four (4) pages.
- 3. Answer All the questions.
- 4. Answer for each question should commence from a new page.
- 5. Relevant charts are provided.
- 6. This is a Closed Book Test (CBT).
- 7. Answers should be in clear hand writing.
- 8. Do not use red colour pens.

Q1. Consider the circuit in the Figure-Q1 with Si transistors.

Figure-Q1

T1: $\beta = h_{fe} = 100$, $h_{ie} = 1k\Omega$ T2: $\beta = h_{fe} = 60$, $h_{ie} = 1.4k\Omega$ You may assume that the effect from h_{oe} and h_{re} are negligible.

- (a) Find the quiescent values of V_{CE1} , I_{C2} , V_{C2} and V_{CE2} . (8 Marks)
- (b) Draw the low frequency equivalent circuit. (6 Marks)
- (c) Find the mid band voltage gain $\frac{v_o}{v_{in}}$. (6 Marks)
- Q2. Consider the circuit diagram in Figure-Q2.

Figure-Q2

(a) Draw the high frequency equivalent circuit for the single stage amplifier shown in Figure-Q2. (7 Marks)

- (b) Clearly stating all your assumptions, find an expression for the voltage gain, A_{ν} .

 (8 Marks)
- (c) Hence show that the low frequency voltage gain for this amplifier is $\frac{\mu}{\mu+1}$, where $\mu = \frac{g_m}{g_d}$. (5 Marks)

Q3.

Figure-Q3

For the amplifier circuit shown in Figure-Q4, $V_{CC}=10\,V$, $R_1=10k\Omega$, $R_2=2.2k\Omega$, $R_C=3.6k\Omega$, $R_E=1k\Omega$, $r_e=100\Omega$, $R_L=10k\Omega$ and $R_f=4.7k\Omega$. Both transistors Q1 and Q2 are identical and have $h_{fe}=100$, $h_{te}=1.2k\Omega$.

(a) Identify the type of feedback used. (2Marks)

(b) Consider the circuit in Figure-Q3 without the feedback. Calculate the voltage gain and the input impedance. (10Marks)

(c) Calculate the feedback ratio. (4Marks)

(d) Hence calculate the overall voltage gain with feedback. (4Marks)

Q4.

- (a) Starting from the first principles, derive the Barkhousen criteria for oscillations to occur. (4Marks)
- (b) Stating all your assumptions, derive an expression for the feedback factor for the circuit in Figure-Q4. (4Marks)
- (c) Derive an expression for the forward gain. (6Marks)
- (d) Hence find the frequency of oscillation ($C = 100 \mu F$, $L_1 = L_2 = 10 mH$, $R_1 = R_2$). (6Marks)

Figure-Q4

Q5.

- (a) A certain electronic medical thermometer has a frequency response given by $\frac{2}{(1+j\omega)(1+3j\omega)}$. Using a suitable frequency domain analysis, calculate the minimum time the doctor must wait after placing the thermometer on the patient, to have an accurate static reading. (5 Marks)
- (b) Derive the time domain behaviour of the above thermometer and justify your answer to (a). (4 Marks)
- (c) Above thermometer static reading taken on a patient in 20 different trials are given by 99.07, 99.54, 100.25, 100.24, 100.18, 99.50, 99.61, 99.86, 100.23, 99.94, 99.32, 100.48, 100.37, 99.90, 100.04, 100.04, 100.09, 100.39, 99.82, 100.79 Fahrenheit.
 - i. Determine how well the above readings fit to a random Normal distribution.
 - (3 Marks)
 - ii. Determine the mean and the variance for the above Normal fit. (4 Marks)
 - iii. Hence, determine the accuracy of the above thermometer with a confidence level of 97%. (4 Marks)