088

The Open University of Sri Lanka Faculty of Engineering Technology Department of Mechanical Engineering

Study Programme

: Bachelor of Technology Honours in Engineering

Name of the Examination: Final Examination

Course Code and Title : DMX3304 Applied Electronics

Academic Year

: 2021/22

Date

: 16th February 2023

Time

: 0930hr - 1230hr

Duration

: 3 hours

General Instructions

- 1. Read all instructions carefully before answering the questions.
- 2. This question paper consists of Eight (8) questions in Eight (8) pages.
- 3. Answer any Five (5) questions only. All questions carry equal marks.
- 4. Answer for each question should commence from a new page.
- 5. This is a Closed Book Test (CBT).
- 6. Answers should be in clear handwriting.
- 7. Do not use **Red** color pen.

a) Briefly explain the Kirchhoff's Current Law (KCL) and Kirchhoff's Voltage Law (KVL).

[4 Marks]

- b) Define the terms 'electric network' and 'electric circuit' used in electrical engineering.

 [4 Marks]
- c) A Wheatstone bridge circuit has the resistances $R_{AB} = 60\Omega$, $R_{CD} = 60\Omega$, $R_{AD} = 40\Omega$, $R_{BC} = 40\Omega$, $R_{BD} = 100\Omega$ as given in Figure Q01(c). The supply is connected to points A and C. If the current drawn from the supply is 100mA, find the currents through R_{BC} , R_{CD} and R_{BD} .

Figure Q01(c)

[6 Marks]

d) Consider the circuit is given in Figure Q01(d), using KCL, KVL, and Ohm's law, Calculate:

i. l₁ [2 Marks]
ii. l₂ [2 Marks]
iii. V₀ [2 Marks]

Figure Q01(d)

a) Explain briefly why an ordinary junction transistor is called a Bipolar Junction Transistor (BJT).

[3 Marks]

b) State three main advantages of using Field Effect Transistors (FET) in electronic designs.

[3 Marks]

c) Consider the circuit given in Figure Q02(c). Calculate the current I and the resistance between terminals A and B.

[6 Marks]

d) Consider the JFET circuit given in Figure Q02(d). Determine the value of drain current (ID) for this circuit.

Figure Q02(d)

[8 Marks]

Question 03

a) Briefly explain what is meant by the biasing of a transistor.

[3 Marks]

b) State the definition of Current gain in the Common-Emitter (CE) configuration of a Bipolar Junction Transistor (BJT).

[3 Marks]

c) Design a bias network circuit diagram for the BJT amplifier circuit given below in Figure Q03(c), and calculate the values of,

(Assume the Common-emitter current gain is 150, $V_{BB} = 5V$ and $V_{BE} = 0.7V$)

- i. R
- ii. I_{B}
- iii. I_{C}
- iv. ΙE

Figure Q03(c)

[14 Marks]

Question 04

a) State 4 characteristics of an ideal Op-amp.

[4 Marks]

- b) Consider the Op-amp circuit that is shown in Figure Q04(b). If $V_i = 0.5V$, Calculate:
 - i. The Output voltage Vo.
 - ii. The current through the $10k\Omega$ resistor.

Figure Q04(b)

[6 Marks]

- c) Design a two-input summering amplifier that has a voltage gain of 10. You can follow the following steps to complete the design task.
 - Step 1 Draw a two-input summing amplifier.
 - Step 2 Determine the values of the resistors.

[10 Marks]

Question 05

a) Draw circuit symbols of a normal diode and a Zener diode and sketch the V/I characteristics of both diodes.

[6 Marks]

b) Consider the diode circuit that is shown in Figure Q05(b). Use the Ideal diode model to calculate the current in both diodes and the Voltage at point D.

Figure Q05(b)

[8 Marks]

c) Consider the Zener diode regulator that is shown in Figure Q05(c). Determine V_L , V_R and I_Z .

Figure Q05(c)

[6 Marks]

a) State three main differences between the Binary number system and the Decimal number system.

[3 Marks]

- b) Convert the octal number 6238 to Decimal, Binary and Hexadecimal number systems.
- c) Represent the Decimal number -3210 as an 8-bit binary number using the 1's complement and 2's complement representation.

[5 Marks]

d) Represent the Decimal number 1359710 in Binary Coded Decimal (BCD).

[4 Marks]

e) Reduce the following Boolean expression to THREE literals.

$$(X'Y'+Z)'+Z+XY+WZ$$

[5 Marks]

Question 07

a) State the De'-Morgan's theorem.

[2 Marks]

b) Simplify the following Boolean expression to THREE literals and construct the logic gate diagram and truth table for the simplified expression.

$$F = XY'Z + X'Y'Z + W'XY + WX'Y + WXY$$

[7 Marks]

c) Simplify the Boolean expression given below using a 4 Variable K-Map.

$$F = B'D + A'BC' + AB'C + ABC'$$

[3 Marks]

d) Simplify the following Boolean expression using a 4 Variable K-Map and express the function as,

$$F = AC' + B'D + A'CD + ABCD$$

- i. Sum of Products (SOP)
- Product of Sums (POS) ii.

[8 Marks]

A building has four floors with staircases, and the staircase lights can be switched on or off at any floor when the switch on that floor is operated. Design a logic circuit for this case using the minimum number of gates. Show the design steps clearly. If the lights are controlled through a relay, show a suitable circuit that meets the above functional requirement. State any assumptions you make.

[20 Marks]

END