

THE OPEN UNIVERSITY OF SRI LANKA B.Sc. Degree Programme / Stand alone courses in Chemistry Level 5 – CMU 3123/CME 5123 – ANALYTICAL CHEMISTRY FINAL EXAMINATION PAPER 2014/15

Date: 2015.05.19

Time: 1.00 p.m.- 3.00 p.m.

Duration: Two hours

Instructions to students

This question paper consists of six questions. Answer any four questions only.

- 1. A water sample (100.0 cm³) from a swimming pool was given to a student to analyze Clusing gravimetry by adding only a slight excess of AgNO₃. The precipitate was digested overnight, filtered, washed with dil. HNO₃ and dried at 110° C. The weight of the precipitate obtained was 0.0900 g. (Ag= 108, Cl= 35.5)
 - (i) What is the precipitate formed for gravimetric analysis? Why is it suitable for gravimetric analysis? (15 marks)
 - (ii) Why only a slight excess of AgNO₃ was added?

(10 marks)

(iii) Give reasons for selecting dil. HNO₃ as the washing solvent.

(10 marks)

(iv) What is the concentration of Cl in the water sample?

(15 marks)

(v) If the water sample was containing 0.001 M of I ions, is it possible to get the precipitate without any iodine? Justify your answer with proper calculations.

$$K_{sp}$$
 of AgCl = 1.6 x 10^{-10} mol² dm⁻⁶
 K_{sp} of AgI = 8.5 x 10^{-17} mol² dm⁻⁶

(30 marks)

- (vi) Comment on the following statements.
 - (a) Although the sensitivity of gravimetry is low, accuracy is high compared to instrumental methods.
 - (b) Digestion of a precipitate minimizes errors.

(20 marks)

2. (i) A bottle contains 1.00 dm³ of NaOH and Na₂CO₃ mixture and the following two titrations were carried out.

Titration I

A 25.00 cm³ of this solution was titrated with 0.01 M HCl using phenolphthalein as the indicator and the end point obtained was 35.00 cm³.

00

Titration II

To another 25.00 cm³ of the solution portion 25.00 cm³ of 0.01 M BaCl₂ was added and the filtrate was titrated with 0.01 M HCl using phenolphthalein as the indicator and the end point obtained was 25.00 cm³.

- (a) Draw and label the two titration curves in the same graph and explain the information (using proper equations) you could obtain by the end points of the two titrations.
- (b) Calculate the concentrations of NaOH and Na₂CO₃ in the bottle separately. (50 marks)
- (ii) Compare redox titrations with acid-base titrations with respect to feasibility, titration curve, selectivity (assuming that suitable indicators are available) and selection criteria of indicators.

(50 marks)

- 3. Two 25.0 cm³ samples of a factory effluent containing the metal ions M²⁺ and X²⁺were taken. To titrate X²⁺, one sample was buffered at pH 7 and titrated with 0.02 M EDTA using Eriochrome Black T as the indicator and the concentration of X²⁺was found to be 2.00 x 10⁻²M. In order to determine the concentration of M²⁺, to the other sample solution 25.0 cm³ of 0.02 M EDTA was added, the pH was adjusted to 10 before boiling. Then the excess EDTA was titrated with another metal ion solution, 0.02 M D²⁺ and the end point reading obtained was 15.00 cm³.
 - (i) Why the two titrations were done at different pH? (10 marks)
 - (ii) Give three possible reasons for carrying out a back titration to determine the concentration of M^{2+} .

(12 marks)

- (iii) Calculate the concentration of M²⁺. (18 marks)
- (iv) Calculate the molar concentration of X^{2+} present at equilibrium after adding 30.00 cm³ of 0.02 M EDTA in the titration buffered at pH 7. (Conditional formation constant of XY= 6.432 x 10^{13} mol⁻¹ dm³)

(40 marks)

(v) A 25.0 cm³ of a sample solution having 0.01 M Fe²⁺ was titrated with 0.02 M Ce⁴⁺ solution.

$$E_{\text{Fe}^{3+}/\text{Fe}^{2+}}^{o} = +0.68 V$$
 $E_{\text{Ce}^{4+}/\text{Ce}^{3+}}^{o} = +1.44 V$

- (a) What is the potential at the equivalence point of the titration?
- (b) Calculate the equilibrium constant for the reaction between Fe²⁺ and Ce⁴⁺.

(20 marks)

- 4. (i) A 20.0 cm³ sample from a sewage tank was brought to pH 13 with NaOH and was diluted to 100.0 cm³. The voltage across a lead membrane electrode (ion selective electrode) and a calomel electrode immersed in this solution was -0.112 V. To another 20.0 cm³ sample solution from the sewage tank was brought to pH 13 with NaOH and was diluted to 100.0 cm³ after addition of 25.0 cm³ of 100 ppm Pb²⁺ solution. Then the voltage across the lead ion selective electrode and a calomel electrode immersed in this solution was increased to -0.300 V. The lead ion selective electrode obeys E = constant 0.0592 log [Pb²⁺]
 - (a) What is the principle behind the membrane electrode with respect to quantitative analysis?
 - (b) What may be the reason for adding standard to the sample solution without measuring the potential of the standard solution only?
 - (c) Calculate the concentration of lead ions in the sewage tank.

(35 marks)

(ii) Compare the principle of conductometric titrations and thermometric titrations as analytical methods.

(20 marks)

- (iii) A CaCO₃ sample contaminated with CaC_2O_4 and some other thermally stable substance was analysed using Thermogravimetry. The first decomposition was observed at 346° C 420° C and the weight was decreased from 160.00 mg to 157.20 mg. The second decomposition was observed at 660° C 840° C and the weight was decreased from 157.20 mg to 10.4 mg. (C= 12.00 g, O = 16.00 g, Ca = 40.00 g)
 - (a) Draw the first derivative Thermo Gravimetric curve (DTG curve).
 - (b) Calculate the weight of CaC₂O₄ and CaCO₃in the mixture. (45 marks)
- 5. (i) What do you mean by "Linearity" of an analytical method? (10 marks)
 - (ii) A student wanted to determine the concentration of the compound RCl₂ in a solution using UV-Visible spectrophotometer. RO is a very stable oxide and R is having a low ionization energy. The following information is also given to him.

	Compound/ion	λ_{\max} (nm)	Molar absorptivity co-efficient (dm³mol⁻¹cm⁻¹)
	$R(OH)_2$	890	5.4×10^5
	RL_2	552	1.00×10^3
٠	RCrO ₄	660	1.21×10^2
	L	552	6.40×10^{1}

- (a) If chemicals are available, what is the most suitable compound from R(OH)₂, RL₂ and RCrO₄ in order to determine R using UV-Visible spectrophotometer? Justify your answer. (15 marks)
- (b) To a 10.0 cm³ of 5.00 x 10⁻³ M RCl₂ solution, 20.0 cm³ of 5.00 x 10⁻² M NaL solution was added and diluted to 500 cm³ after mixing. The absorbance was measured at 552 nm using UV-Visible spectrophotometer at a path length of 1.00 cm. Calculate the Absorbance.

(25 marks)

- (c) Another student who works in another laboratory decides to analyze RCl₂ using Atomic Absorption Spectrophotometer. Identify two chemical interferences in the analysis and suggest methods to overcome them.

 (20 marks)
- (d) Name two components used in Atomic Absorption Spectrophotometer (AAS) which are not in UV-Visible spectrophotometer and explain the function of the two components.

(20 marks)

- (e) What is the significant difference in spectra obtained by UV-Visible spectrophotometer and AAS? (10 marks)
- 6. (i) A divalent metal ion (M^{2^+}) is extracted from a 100.0 mL of a $1.0x10^{-6}$ M aqueous solution into 100.0 mL of an organic phase containing 0.1mM of chelating ligand HL. Partition coefficients for the ligand (K_{DHL}) and for the metal ligand complex (K_{DC}) are $1.0x10^4$ and $7.0x10^4$ respectively. Acid dissociation constant (K_a) of the ligand is $5.0x10^{-5}$ while formation constant for the metal ligand complex (β) is $2.5x10^{16}$.
 - (a) Write down equations for all the equilibrium reactions involved in the extraction process.
 - (b) Derive an expression for the distribution ratio (D) in terms of K_{DHL} , K_{DC} , K_a , β and concentrations of HL and H^+ ions.
 - (c) Calculate D when the aqueous solution is buffered to pH 1.0.

(55 marks)

- (ii) List down three assumptions you made in deriving the expression for D, in above part (i) (b). (15 marks)
- (iii) Compare and contrast the following pairs.
 - (a) Thin layer chromatography and paper chromatography
 - (b) Normal phase chromatography and reverse phase chromatography
 - (c) Isocratic elution and gradient elution in column chromatography

(30 marks)