

The Open University of Sri Lanka B.Sc. / B.Ed. Degree Programme – Level 05 Final Examination -2015/2016 **Applied Mathematics** AMU3183— Numerical Methods

Duration: Two Hours

Date: 03. 07. 2016

Time: 01.00 p.m. - 03.00 p.m.

Answer Four Questions Only.

(a) Prove that

(i)
$$E = \Delta + 1$$
,

(ii)
$$E = (1 - \nabla)^{-1}$$
.

(ii)
$$E = (1 - \nabla)^{-1}$$
, (iii) $\delta = E^{1/2} - E^{-1/2}$,

(iv)
$$\nabla \Delta = \Delta \nabla = \delta^2$$

(v)
$$\Delta - \nabla = \delta^2$$

where Δ , ∇ , δ and E are the forward difference, the backward difference, the central difference and the shift operators respectively.

- (b) Derive the Gregory-Newton forward interpolation formula.
- (c) Hence, interpolate f(45) given that f(x) passes through the points (40, 31), (50, 73), (60, 124), (70, 159) and (80, 190).
- 2. (a) (i) Derive the Newton's general interpolation formula with divided differences.
 - (ii) Hence, find the value of f(8), given that f(x) passes through the points (4, 48), (5, 100), (7, 294), (10, 900), (11, 1210) and (13, 2028).
 - (b) (i) Derive the Lagrange's interpolation formula.
 - (ii) Applying Lagrange's formula inversely, obtain the root of the equation f(x) = 0, given that f(30) = -30, f(34) = -13, f(38) = 3 and f(42) = 18.

- 3. (a) Derive Simpson's One Third Rule.
 - (b) If the interval [a, b] is divided into 2n sub intervals then show that the error in Simpson's one third rule is given by $|E| < \frac{(b-a)h^4}{180}M$ where M is the numerically greater value of $y_0^{i\nu}$, $y_2^{i\nu}$, $\cdots y_{2n-2}^{i\nu}$.
- (c) Applying Simpson's One Third rule for following data,

si	n0	$\sin(\pi/12)$	$\sin(\pi/6)$	$\sin(\pi/4)$	$\sin(\pi/3)$	$\sin(5\pi/12)$	$\sin(\pi/2)$
(0	0.2588	0.5000	0.7071	0.8660	0.9659	1.0

evaluate the integral $\int_{0}^{\pi/2} \sin x \, dx$.

- 4. (a) (i) Derive formula for the Euler's method to solve $\frac{dy}{dx} = f(x, y)$ subject to the initial condition $y(x_0) = y_0$.
 - (ii) Solve $\frac{dy}{dx} = 3x^2 + 1$ with the initial condition y(1) = 2 using the Euler's method. Estimate y(2) taking h = 0.25.
- (b) (i) Derive formula for the modified Euler method to solve $\frac{dy}{dx} = f(x, y)$ subject to the initial condition $y(x_0) = y_0$.
 - (ii) Using modified Euler method solve $\frac{dy}{dx} = 3e^x + 2y$ with the initial condition y(0) = 0. Estimate y(1) taking h = 0.25

5. (a) Applying Taylor series method of fourth order for the differential equation

$$\frac{dy}{dx} = xy^2 + 1$$
 subject to the initial condition $y(0) = 1$, evaluate $y(0.2)$ and $y(0.4)$.

- (b) Applying Taylor series method of fourth order for the system of differential equations $\frac{dy}{dx} = x + z$ and $\frac{dz}{dx} = x y^2$ subject to the initial conditions y(0) = 2 and z(0) = 1, evaluate y(0.1), y(0.2), z(0.1) and z(0.2).
- 6. (a) State fourth order Runge-Kutta algorithm to solve $\frac{dy}{dx} = f(x, y)$ subject to the initial condition $y(x_0) = y_0$.
 - (b) Solve $\frac{dy}{dx} = 1 + y^2$ with the initial condition y(0) = 0 using Runge-Kutta method of fourth order. Evaluate the value of y, when x = 0.2 and x = 0.4.
 - (c) Solve $\frac{d^2y}{dx^2} = y^3$ with the initial condition y(0) = 10, y'(0) = 5 using Runge-Kutta method of fourth order and evaluate y(0.1).

5. (a) Applying Taylor series method of fourth order for the differential equation

$$\frac{dy}{dx} = xy^2 + 1$$
 subject to the initial condition $y(0) = 1$, evaluate $y(0.2)$ and $y(0.4)$.

- (b) Applying Taylor series method of fourth order for the system of differential equations $\frac{dy}{dx} = x + z$ and $\frac{dz}{dx} = x y^2$ subject to the initial conditions y(0) = 2 and z(0) = 1, evaluate y(0.1), y(0.2), z(0.1) and z(0.2).
- 6. (a) State fourth order Runge-Kutta algorithm to solve $\frac{dy}{dx} = f(x, y)$ subject to the initial condition $y(x_0) = y_0$.
 - (b) Solve $\frac{dy}{dx} = 1 + y^2$ with the initial condition y(0) = 0 using Runge-Kutta method of fourth order. Evaluate the value of y, when x = 0.2 and x = 0.4.
 - (c) Solve $\frac{d^2y}{dx^2} = y^3$ with the initial condition y(0) = 10, y'(0) = 5 using Runge-Kutta method of fourth order and evaluate y(0.1).

The Open University of Sri Lanka
B.Sc. / B.Ed. Degree Programme – Level 05
Final Examination -2015/2016
Applied Mathematics
AMU3183— Numerical Methods

Duration: Two Hours

Date: 03. 07. 2016

Time: 01.00 p.m. - 03.00 p.m.

Answer Four Questions Only.

- 1. (a) Prove that
 - (i) $E = \Delta + 1$,

- (ii) $E = (1 \nabla)^{-1}$,
- (iii) $\delta = E^{1/2} E^{-1/2}$,

(iv)
$$\nabla \Delta = \Delta \nabla = \delta^2$$

(v)
$$\Delta - \nabla = \delta^2$$

where Δ , ∇ , δ and E are the forward difference, the backward difference, the central difference and the shift operators respectively.

- (b) Derive the Gregory-Newton forward interpolation formula.
- (c) Hence, interpolate f(45) given that f(x) passes through the points (40, 31), (50, 73), (60, 124), (70, 159) and (80, 190).
- 2. (a) (i) Derive the Newton's general interpolation formula with divided differences.
 - (ii) Hence, find the value of f(8), given that f(x) passes through the points (4, 48), (5, 100), (7, 294), (10, 900), (11, 1210) and (13, 2028).
 - (b) (i) Derive the Lagrange's interpolation formula.
 - (ii) Applying Lagrange's formula inversely, obtain the root of the equation f(x) = 0, given that f(30) = -30, f(34) = -13, f(38) = 3 and f(42) = 18.

- 3. (a) Derive Simpson's One Third Rule.
 - (b) If the interval [a, b] is divided into 2n sub intervals then show that the error in Simpson's one third rule is given by $|E| < \frac{(b-a)h^4}{180}M$ where M is the numerically greater value of y_0^{iv} , y_2^{iv} , $\cdots y_{2n-2}^{iv}$.
- (c) Applying Simpson's One Third rule for following data,

sin0	$\sin(\pi/12)$	$\sin(\pi/6)$	$\sin(\pi/4)$	$\sin(\pi/3)$	$\sin(5\pi/12)$	$\sin(\pi/2)$
0	0.2588	0.5000	0.7071	0.8660	0.9659	1.0

evaluate the integral $\int_{0}^{\pi/2} \sin x \, dx$.

- 4. (a) (i) Derive formula for the Euler's method to solve $\frac{dy}{dx} = f(x, y)$ subject to the initial condition $y(x_0) = y_0$.
 - (ii) Solve $\frac{dy}{dx} = 3x^2 + 1$ with the initial condition y(1) = 2 using the Euler's method. Estimate y(2) taking h = 0.25.
- (b) (i) Derive formula for the modified Euler method to solve $\frac{dy}{dx} = f(x, y)$ subject to the initial condition $y(x_0) = y_0$.
 - (ii) Using modified Euler method solve $\frac{dy}{dx} = 3e^x + 2y$ with the initial condition y(0) = 0. Estimate y(1) taking h = 0.25

5. (a) Applying Taylor series method of fourth order for the differential equation

$$\frac{dy}{dx} = xy^2 + 1$$
 subject to the initial condition $y(0) = 1$, evaluate $y(0.2)$ and $y(0.4)$.

- (b) Applying Taylor series method of fourth order for the system of differential equations $\frac{dy}{dx} = x + z$ and $\frac{dz}{dx} = x y^2$ subject to the initial conditions y(0) = 2 and z(0) = 1, evaluate y(0.1), y(0.2), z(0.1) and z(0.2).
- 6. (a) State fourth order Runge-Kutta algorithm to solve $\frac{dy}{dx} = f(x, y)$ subject to the initial condition $y(x_0) = y_0$.
 - (b) Solve $\frac{dy}{dx} = 1 + y^2$ with the initial condition y(0) = 0 using Runge-Kutta method of fourth order. Evaluate the value of y, when x = 0.2 and x = 0.4.
 - (c) Solve $\frac{d^2y}{dx^2} = y^3$ with the initial condition y(0) = 10, y'(0) = 5 using Runge-Kutta method of fourth order and evaluate y(0.1).