The Open University of Sri Lanka
Department of Mathematics
Advanced Certificate in ScienceProgramme
MYF2519/MHF2519 - Combined Mathematics I-Level 2

Final Examination 2021/22

Date:24-09-2022

From 9:30am. To 12:30pm.

Answer All Questions in Part A and Answer Five Questions in Part B.

PART A

1. (a) Find the domain, range and codomain of the function

$$y = \frac{2x}{x^2 - 4}, \quad x \neq \pm 2.$$

- (b) Sketch the graph of the above function.
- 2. (a) The functions f(x) and g(x) are defined by $f: x \to x^2$ and $g: x \to x 1$ Find the following:

(i)
$$f \circ g(x)$$

(ii) $g \circ f(x)$

- (b) The functions f and g are defined as $f: x \to e^{2x}$ and $g: x \to x + 1$.
 - (i) Calculate $f^{-1}(3) \times g^{-1}(3)$.
 - (ii) Show that $(f \circ g)^{-1}(3) = ln\sqrt{3} 1$.
- 3. If the roots of the equation $ax^2 + bx + c = 0$ are α and β , find the quadratic equation whose roots are $\frac{1}{\alpha}$ and $\frac{1}{\beta}$ where $\alpha, \beta \neq 0$.
- 4. Prove that $\log_{a^n} x^m = \frac{m}{n} \log_a x$. Hence, show that

$$log_a x + log_{a^2} x^2 + log_{a^3} x^3 + \dots + log_{a^{2022}} x^{2022} = log_a x^{2022}$$

- 5. Find the equation of the straight line through the point (-1,3), perpendicular to the line 4x + 3y + 1 = 0.
- 6. Solve the equation $3^{2x} + 3^x 12 = 0$.

- 7. Show that (x-1) is a factor of $x^3 2x^2 x + 2$. Hence, find the other factors of $x^3 2x^2 x + 2$.
- 8. If p, q > 1, prove that the roots of the equation

$$(x-1)(2x-p-q)+(x-p)(x-q)=0$$
 are real and distinct.

- 9. (a) If tan(x + y) = 33 and tan x = 3 then show that tan y = 0.3.
 - (b) If $\tan(\theta/2) = t$ then show that $\sin \theta = \frac{2t}{1+t^2}$ and $\cos \theta = \frac{1-t^2}{1+t^2}$.

Hence, solve the equation $\sqrt{3}\cos\theta - \sin\theta = 1$.

10. If the roots of the quadratic equation $x^2 - px + q = 0$ are $\tan A$ and $\tan B$, then find $\sin^2(A+B)$.

PART B

- 11. (a) If $x^2 + px + 1$ is a factor of $ax^3 + bx + c$ then show that $a^2 c^2 = ab$.
- (b) If x + 2 is a factor of $(x + 1)^7 + (2x + k)^3$ find the value of k.
- (c) When the cubic expression $ax^3 + bx + c$ is divided by x + 1, x 1 and x 2 the remainders are respectively 4, 0 and 4. Find the values of a, b and c.
- 12. (a) If the roots of the equation $x^2 2(a-1)x + 2a + 1 = 0$ are positive find the value of a.
 - (b) The roots of the quadratic equation $ax^2 + bx + c = 0$ are α and β . Find the roots of the equation $a^3x^2 + abcx + c^3 = 0$ in terms of α and β .
 - (c) The roots of the quadratic equation $x^2 p(x+1)x c = 0$ are α and β .

Show that
$$(\alpha + 1)(\beta + 1) = 1 - c$$
.

Hence, show that
$$\frac{\alpha^2 + 2\alpha + 1}{\alpha^2 + 2\alpha + c} + \frac{\beta^2 + 2\beta + 1}{\beta^2 + 2\beta + c} = 1.$$

- 13. (a) Sketch the graph of $y = \tan x$, $0 \le x \le 2\pi$. On the same graph sketch the line $y = \pi x$.
 - (b) Consider the equation $x + \tan x = \pi$. Denote by x_0 the solution of the equation in the interval $\left(0, \frac{\pi}{2}\right)$.
 - (i) Find in terms of x_0 and π , the remaining solutions of the given equation in the interval $[0, 2\pi]$.
 - (ii) How many solutions does the equation $x + \tan x = \pi$, have for $x \in \mathbb{R}$?
 - (c) Given that $\cos A = c$ and $\sin A = s$.
 - (i) Write down the values of $\cos\left(\frac{\pi}{2} A\right)$ and $\sin\left(\frac{\pi}{2} A\right)$. Hence, show that

$$\tan\left(\frac{\pi}{2} - A\right) = \frac{1}{\tan A}$$

- (ii) Given that $\tan A + \tan \left(\frac{\pi}{2} A\right) = \frac{4}{\sqrt{3}}$, find possible values of A.
- (iii) Hence, find the values of $A \in \left(0, \frac{\pi}{2}\right)$ that satisfy the equation given in part (ii)
- 14. With the usual notation for a triangle ABC, show that

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}.$$

Prove that

(a)
$$b \sin\left(\frac{B}{2} + C\right) = (c + a) \sin\frac{B}{2}$$
.

(b)
$$\frac{\cot\frac{C}{2} + \cot\frac{A}{2}}{\cot\frac{B}{2}} = \frac{2b}{a+c-b}.$$

(c)
$$(b^2 - c^2) \cot A + (c^2 - a^2) \cot B + (a^2 - b^2) \cot C = 0$$
.

15. (a) Find the general solution of the following equations:

(i)
$$\cos 3\theta + \cos \theta = \sin 2\theta$$

(ii)
$$\sqrt{3}\sin\theta - \cos\theta = \sqrt{2}$$

(b) If the inverse functions take the principal values prove that

$$tan^{-1}\frac{3}{4} + tan^{-1}\frac{4}{3} = \frac{\pi}{2}.$$

(c) Find the maximum and minimum values of the expression

$$y = 11\cos^2 x + 16\sin x \cos x - \sin^2 x.$$

16. (a) Let $P \equiv (x_1, y_1)$ and $Q \equiv (x_2, y_2)$. Prove that the length PQ is given by

$$PQ = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}.$$

Hence, if $A \equiv (ap^2, 4ap)$ and $B \equiv (aq^2, 4aq)$ are given points such that p > q, show that $AB = a(p-q)\sqrt{(p+q)^2 + 16}$.

(b) Let $P \equiv (1, -2)$, $Q \equiv (2, 3)$, $R \equiv (-3, 2)$ and $S \equiv (-4, -3)$. Find the gradients of PQ, QR, RS and SP. Also find the lengths of PR and QS.

Hence, show that PQRS is a rhombus.

(c) The coordinates of the vertices of the triangle ABC are given by $A \equiv (x_1, y_1)$, $B \equiv (x_2, y_2)$ and $C \equiv (x_3, y_3)$. Show that the area of the triangle ABC is given by

$$\frac{1}{2}\{(x_1y_2-x_2y_1)+(x_2y_3-x_3y_2)+(x_3y_1-x_1y_3)\}.$$

Hence, find the area of the quadrilateral *ABCD* with vertices $A \equiv (0, 2)$, $B \equiv (4, 3)$, $C \equiv (1, 5)$ and $D \equiv (-1, -2)$.

17. (a) The point $C \equiv (\bar{x}, \bar{y})$ divides the line joining the points $A \equiv (x_1, y_1)$ and $B \equiv (x_2, y_2)$ internally with ratio m: n. Show that

$$\bar{x} = \frac{nx_1 + mx_2}{n+m}$$
 and $\bar{y} = \frac{ny_1 + my_2}{n+m}$.

Hence, justify that the coordinates of the mid-point of AB is given by $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$.

(b) The coordinates of the centre and a vertex of a square are (2, -1) and (-1, 1) respectively. Find the coordinates of its other vertices.