## The Open University of Sri Lanka Faculty of Natural Sciences B.Sc/ B. Ed Degree Programme



Department

: Mathematics

Level

: 04

Name of the Examination

: Final Examination

Course Title and - Code

: Real Analysis 1 - PEU4300

Academic Year

: 2021/22

Date

: 13/10/2022

Time

: 1.30 p.m.-3.30 p.m.

Duration

: Two Hours.

## **General Instructions**

- 1. Read all instructions carefully before answering the questions.
- 2. This question paper consists of (6) questions in (2) pages.
- 3. Answer any 04 questions only. All questions carry equal marks.
- 4. Answer for each question should commence from a new page.
- 5. Draw fully labelled diagrams where necessary
- 6. Involvement in any activity that is considered as an exam offense will lead to punishment
- 7. Use blue or black ink to answer the questions.
- 8. Clearly state your index number in your answer script

- (01) (a) Using the definition of limit, prove that  $\lim_{n\to\infty}\frac{n+2}{n-\frac{3}{2}}=1$ .
  - (b) Using the definition of a sequence diverges to infinity, prove that the sequence  $\left(\frac{n^2+5n}{3n+1}\right)$  diverges to infinity.
  - (c) Let  $x_1=1$  and  $x_n=\sqrt{2+x_{n-1}}$  for each  $n\geq 2$ . Show that  $\langle x_n \rangle$  is bounded above by 2 and monotone.
- (02) (a) State the sandwich theorem for limits of sequences. Prove that  $\left(4 + \frac{\cos n}{3n}\right)$  converges and find its limits.
  - (b) Suppose  $\langle x_n \rangle$  and  $\langle y_n \rangle$  are real sequences and l is a real number such that for each  $n \in \mathbb{N}$ ,  $|x_n-l| \leq y_n$  and  $\lim_{n \to \infty} y_n = 0$ , Prove that  $\lim_{n \to \infty} x_n = l$ . Deduce that  $\lim_{n \to \infty} \frac{3n^4+1}{n^4+n^2} = 3$ .
  - (c ) Write down the limsup and liminf of the sequence  $\left((-1)^n + \frac{1}{n}\right)$ .
- (03) (a) Using the definition, show that the sequence  $(4 + (-1)^n)$ .
  - (b) Let  $\langle x_n \rangle$  be a bounded divergent sequence of real numbers and let  $\langle y_n \rangle$  be a Sequence that converges to zero. Prove that the sequence  $\langle x_n | y_n \rangle$  converges to zero. Deduce that  $\left\langle -\left(\frac{1+(-1)^n}{2n}\right) \right\rangle$  converges to zero.
- (04) (a) If  $x_n=1+\frac{(-1)^n}{2n}$ , find the least positive integer m such that  $|x_n-1|<\frac{1}{10^3}$  for each n>m.
  - (b) Discuss the boundness of the following sequence  $\langle a_n \rangle$  is given by  $a_n = 1 + \tfrac{1}{3} + \tfrac{1}{3^2} + \cdots + \tfrac{1}{3^n} \ \text{ for each } n \in \mathbb{N}.$
  - (c) Discuss the convergence of the series  $\sum_{n=1}^{\infty} (-1)^{n+1}$  .
  - (d) Show that  $\sum_{n=1}^{\infty} \frac{1}{n(n+3)}$  converges to  $\frac{11}{18}$ .

(05) Determine the convergence or divergence of each of the following series:

(i) 
$$\sum_{n=1}^{\infty} \frac{1}{2n-1}$$

(ii) 
$$\sum_{n=1}^{\infty} \frac{n^n}{(n+1)^{n+1}}$$

(iii) 
$$\sum_{n=1}^{\infty} \frac{1}{2^n+3^n}$$

(iv) 
$$\sum_{n=1}^{\infty} \frac{2^n n!}{n^n}$$

(v) 
$$\sum_{n=1}^{\infty} \frac{(n-\ln n)^n}{2^n n^n}$$

(06) (a) Define the radius of convergence of the power series  $\sum_{n=0}^{\infty} a_n x^n$ .

Determine the radius of convergence of each of the following power series:

(i) 
$$\sum_{n=1}^{\infty} \left(\frac{n+3}{n}\right)^n x^n$$

(ii) 
$$\sum_{n=0}^{\infty} \frac{n^n}{n!} x^n$$

(b) Determine whether each of the following series is absolutely convergent or divergent.

(i) 
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1} \sin n\alpha}{n^2}$$
 ,  $\alpha$  is real.

(ii) 
$$\sum_{n=1}^{\infty} \frac{(-1)^n n^{100}}{2n!}$$

(iii) 
$$\sum_{n=1}^{\infty} \frac{-n+2}{n^3+1}$$

.