The Open University of Sri Lanka

Faculty of Engineering Technology

Department of Mechanical Engineering

Study Programme

: Bachelor of Technology Honours in Engineering

Name of the Examination

: Final Examination

Course Code and Title

: DMX4411 -Signal Processing

Academic Year

: 2020/2021

Date

: 18th February 2022

Time

: 1400-1700 hrs

Duration

: 3 hours

- 1. Read all instructions carefully before answering the questions
- 2. This question paper consists of Seven (7) questions in Six (6) pages.
- 3. Answer any Five (5) questions only. All questions carry equal marks.
- 4. Answer for each question should commence from a new page.
- 5. This is a Closed Book Test (CBT).
- 6. The symbols used in this paper have their usual meanings.
- 7. Clearly state any assumptions that you may make.
- 8. Answers should be in clear handwriting.
- 9. Do not use red color pen.
- 10. Scientific calculators are allowed.

Question 1 [20 marks]

a) Explain the following in brief

i.	Continuous time and discrete time signals.	[2 marks]
----	--	-----------

- ii. Analog and digital signals. [2 marks]
- iii. Periodic and Aperiodic signals. [2 marks]
- b) Sketch the graphs for the following:

i.	Analog, continuous-time signal.	[2 marks]
ii.	Digital, continuous-time signal.	[2 marks]
iii.	Analog, discrete-time signal.	[2 marks]

- iv. Digital, discrete-time signal. [2 marks]
- c) An exponential function $f(t) = e^{-2t}$ shown in Fig.Q1 is delayed by 1second. Sketch and mathematically describe the delayed function. Repeat the problem if f(t) is advanced by one second. [6 marks]

Fig.Q1

Question 2 [20 marks]

- a) List down five classifications of systems. [3 marks]
- b) What does mean by a discrete time system? Represent it in the form of a block diagram and a mathematical expression. [4 marks]
- c) Explain the concept of linearity. [3 marks]
- d) The unit impulse response h(t) of a Linear time invariant continuous system (LTIC) is described by the nth order differential equation given by,

$$h(t) = b_n \delta(t) + [P(D)y_n(t)]u(t),$$

where b_n is the coefficient of the nth order term in P(D) and $y_n(t)$ is a linear combination of the characteristic modes of the system subjected to following initial conditions.

$$y_n^{(n-1)}(0) = 1$$
, and $y_n(0) = \dot{y}_n(0) = \ddot{y}_n(0) = \cdots = y_n^{(n-2)}(0) = 0$
 $n = 1 : y_n(0) = 1$
 $n = 2 : y_n(0) = 0$ and $\dot{y}_n(0) = 1$
 $n = 3 : y_n(0) = \dot{y}_n(0) = 0$ and $\ddot{y}_n(0) = 1$
 $n = 4 : y_n(0) = \dot{y}_n(0) = \ddot{y}_n(0) = 0$ and $\ddot{y}_n(0) = 1$

Determine the unit impulse response h(t) for a system specified by the following equation.

i.
$$(D^2 + 3D + 2)y(t) = Df(t)$$
 [5 marks]
ii. $(D + 2)y(t) = (3D + 5)f(t)$ [5 marks]

Question 3 [20 marks]

- a) List down five general convolution properties with their respective equations. [10 marks]
- b) Consider the convolution problem that involves shifted signals as presented in Fig.Q3. Find the convolution of the shifted signal $f_1(t+1)$ and the signal $f_2(t)$. Let f(t+1) represent the convolution of $f_1(t+1)$ and $f_2(t)$. Obtain the convolution through the regular convolution procedure with $f_1(t+1)$ and $f_2(t)$. State the convolution process graphically for the given signals and state the convolution in each appropriate time intervals. [10 marks]

[20 marks]

Question 4

a) Briefly discuss the difference between the Fourier series and Fourier transformation.[3 marks]

- b) If x(t) is a periodic signal with a fundamental period of T_0 , write an expression for the Complex Exponential Fourier series and Trigonometric Fourier series. [3 marks]
- c) The compact trigonometric Fourier series is the combination of sine and cosine terms of the same frequency in the trigonometric Fourier series to obtain a single sinusoid of the same frequency.

$$f(t) = C_0 + \sum_{n=1}^{\infty} C_n \cos(n\omega_0 t + \theta_n) \qquad t_1 \le t \le t_1 + T_0$$

Where,

$$C_n = \sqrt{{a_n}^2 + {b_n}^2}$$
$$\theta_n = \tan^{-1}\left(\frac{-b_n}{a_n}\right)$$

Find the compact trigonometric Fourier series for the exponential $e^{-t/2}$ depicted in the Fig.Q4 over the shaded interval $0 \le t \le \pi$. [5 marks]

- d) Explain the relation between the Fourier transform and the Z-transform using proper expressions. [4 marks]
- e) Briefly explain the process of Amplitude modulation with graphical examples of modulation. [5 marks]

Fig.Q4

Question 5

[20 marks]

- a) Write down the expression for the following, for a periodic sequence x[n] with a fundamental period No. [6 marks]
 - i. Discrete Fourier series representation.
 - ii. Duality property of Discrete Fourier series.
 - iii. Parseval's Theorem.
- b) Find the discrete time Fourier series for the periodic sampled gate function shown in Fig.Q5. [5 marks]
- c) Find the discrete-time Fourier series (DTFS) and sketch their spectra $|D_r|$ and $< D_r$ for $0 \le r \le N_0$ -1 for the following periodic signal.

$$f[k] = 4\cos 2.4xk + 2\sin 3.2\pi k$$

Hint: Reduce frequency to the fundamental range ($0 \le \Omega \le 2\pi$). The fundamental frequency Ω_0 is the largest number of which the frequency appearing in the Fourier series are integral multiplies. [9 marks]

Fig.Q5

Question 6

[20 marks]

- a) A sampling of a signal is done in several ways. Basically, there are three types of sampling techniques. Name and briefly explain the main three sample techniques.
 [6 marks]
- b) Compare the sampling techniques among four sampling parameters.

[4 marks]

c) Explain the applications of sampling theorem.

[2 marks]

d) List down the advantages of digital signals over analog signals.

[2 marks]

e) Calculate the Nyquist rate and the Nyquist interval for the following

[6 marks]

- i. $x(t) = 4\sin(30\pi t) + 3\cos(70\pi t)$
- ii. $x(t) = 8\sin(50\pi t)$
- iii. $x(t) = \sin(500\pi t)/\pi t$

Question 7

[20 marks]

- a) Discuss the digital filtering capabilities with proper expressions and graphical representation of available filter types. [10 marks]
- b) Explain briefly the following;

i. Band-limited signal.

[5 marks]

ii. Absolute bandwidth.

[5 marks]