The Open University of Sri Lanka Faculty of Engineering Technology Department of Electrical and Computer Engineering

Study Programme

: Bachelor of Technology Honours in Engineering

Name of the Examination

: Final Examination

Course Code and Title

: EEX6541 Field Theory

Academic Year

: 2020/2021

Date

: 19th Saturday February 2022

Time

: 0930 - 1230 hrs

Duration

: 3 hours

General Instructions

- 1. Read all the instructions carefully before answering the questions.
- 2. This is a Closed Book Test (CBT).
- 3. This question paper consists of Six (06) questions in Three (03) pages.
- 4. Answer only five (05) questions by answering ALL in Section A and selecting only two (02) from Section B.
- 5. All questions carry equal marks.
- 6. The answer for each question should commence from a new page.
- 7. Answers should be in clear handwriting.
- 8. Do not use Red color pen.
- 9. All the notations have their usual meaning.
- 10. Assume any missing parameters with suitable values.

Section A

Answer all questions in this section.

Q1.

(a) Discuss the Poisson's and Laplace's equations.

[2 Marks]

(b) Three charges +q, -q and +q are situated at the vertices of an equilateral triangle of side a. Determine the field at the centroid of the triangle.

[6 Marks]

- (c) Conducting spherical shells with radii a = 10 cm and b = 20 cm are maintained at a potential difference of 100 V such that V(r = b) = 0 and V(r = a) = 100 V. Given that $\varepsilon_r = 2.5$ in the region, determine
 - (i) V and E in the region between the shells,
 - (ii) the total charge induced on the shells and
 - (iii) the capacitance of the capacitor.

[12 Marks]

O2.

(a) What is Biot-Savart law?

[2 Marks]

(b) A circular loop a of wire carries a current I in positive θ direction has a radius a and lies on the xy-plane. The center of the loop is at the origin. Determine H(0,0,z) using the Biot-Savart law.

[6 Marks]

(c) Two coaxial circular wires of radii a and b (b > a) are separated by a distance h ($h \gg a, b$). Find the mutual inductance between the wires.

[12 Marks]

Q3.

(a) State Maxwell's equations in Integral and Differential forms.

[4 Marks]

(b) In free space it is given that $B = B_m e^{j(\omega t - \beta z)} a_y$. Determine E.

[6 Marks]

(c) In a medium characterized by $\sigma=0$, $\mu=\mu_0$, ε_0 and $E=20\sin(10^8t-\beta z)a_y V/m$, calculate β and H.

[10 Marks]

Section B

Select only two questions from this section.

Q4.

(a) Explain plane wave propagation in free space.

[4 Marks]

(b) State Poynting theorem and explain its physical meaning.

[4 Marks]

(c) A uniform plane wave propagating in a medium has

$$E = 2e^{-\alpha z}\sin(10^8 t - \beta z) \, a_y \, V/m$$

If the medium characterized by $\varepsilon_r = 1$, $\mu_r = 20$ and $\sigma = 3$ S/m. Determine α , β and H. [12 Marks]

Q5.

(a) Explain the term "Monopole antenna".

[4 Marks]

(b) What do you mean by radiation pattern of an antenna.

[4 Marks]

(c) Derive an equation for effective aperture of an antenna.

[6 Marks]

(d) An antenna is having a directivity of 200 and a wavelength of 10 m. Calculate its maximum effective aperture.

[6 Marks]

Q6. Discuss the topic "Microwaves can be used in several applications" with reference to the following applications.

- (a) Telecommunication
- (b) Radar systems and
- (c) Heating.

[20 Marks]

-end-

Note:

Cylindrical Coordinates

$$\begin{split} \nabla f &= \frac{\partial f}{\partial \rho} \hat{\rho} + \frac{1}{\rho} \frac{\partial f}{\partial \varphi} \hat{\varphi} + \frac{\partial f}{\partial z} \hat{\mathbf{z}} \\ \nabla \cdot \mathbf{A} &= \frac{1}{\rho} \frac{\partial}{\partial \rho} (\rho A_{\rho}) + \frac{1}{\rho} \frac{\partial A_{\varphi}}{\partial \varphi} + \frac{\partial A_{z}}{\partial z} \\ \nabla \times \mathbf{A} &= \left(\frac{1}{\rho} \frac{\partial A_{z}}{\partial \varphi} - \frac{\partial A_{\varphi}}{\partial z} \right) \hat{\rho} + \left(\frac{\partial A_{\rho}}{\partial z} - \frac{\partial A_{z}}{\partial \rho} \right) \hat{\varphi} + \frac{1}{\rho} \left(\frac{\partial}{\partial \rho} (\rho A_{\varphi}) - \frac{\partial A_{\rho}}{\partial \varphi} \right) \hat{\mathbf{z}} \\ \nabla^{2} f &= \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial f}{\partial \rho} \right) + \frac{1}{\rho^{2}} \frac{\partial^{2} f}{\partial \varphi^{2}} + \frac{\partial^{2} f}{\partial z^{2}} \end{split}$$

Spherical Coordinates

$$\nabla f = \frac{\partial f}{\partial r} \hat{\mathbf{r}} + \frac{1}{r} \frac{\partial f}{\partial \theta} \hat{\boldsymbol{\theta}} + \frac{1}{r \sin \theta} \frac{\partial f}{\partial \varphi} \hat{\boldsymbol{\varphi}},$$

$$\nabla \cdot \mathbf{A} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 A_r \right) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta A_\theta \right) + \frac{1}{r \sin \theta} \frac{\partial A_\varphi}{\partial \varphi},$$

$$\nabla \times \mathbf{A} = \frac{1}{r \sin \theta} \left(\frac{\partial}{\partial \theta} \left(A_\varphi \sin \theta \right) - \frac{\partial A_\theta}{\partial \varphi} \right) \hat{\mathbf{r}}$$

$$+ \frac{1}{r} \left(\frac{1}{\sin \theta} \frac{\partial A_r}{\partial \varphi} - \frac{\partial}{\partial r} \left(r A_\varphi \right) \right) \hat{\boldsymbol{\theta}}$$

$$+ \frac{1}{r} \left(\frac{\partial}{\partial r} \left(r A_\theta \right) - \frac{\partial A_r}{\partial \theta} \right) \hat{\boldsymbol{\varphi}},$$

$$\nabla^2 f = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial f}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial f}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 f}{\partial \varphi^2}$$

$$= \left(\frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r} \right) f + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) f + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2}{\partial \varphi^2} f.$$