The Open University of Sri Lanka Faculty of Engineering Technology Department of Mechanical Engineering

Study Programme

: Bachelor of Technology Honours in Engineering

Name of the Examination: Final Examination

Course Code and Title

: DMX4571/MEX4271 - Sensors and Actuators

Academic Year

: 2019/20

Date

: 30th September 2020

Time

: 1330hr - 1630hr

Duration

: 3 hours

WRITE YOUR REGISTRATION NUMBER C	LEARLY
WITHIN THE SPACE PROVIDED	

|--|

General Instructions

- 1. Read all instructions carefully before answering the questions.
- 2. This question paper consists of **Eight (8)** questions in **Six (6)** pages.
- 3. Answer any Five (5) questions only. All questions carry equal marks.
- 4. Answer for each question should commence from a new page.
- 5. This is a Closed Book Test (CBT).
- 6. Answers should be in clear hand writing.
- 7. Do not use Red color pen.

Question 01

a) Briefly explain what is a sensor. Give an example of a sensor and describe its function.

[4 Marks]

b) List the factors that need to be taken into consideration when selecting a sensor for a particular application.

[4 Marks]

c) Briefly explain what is a displacement sensor and name three sensors which are used for displacement measurement.

[4 Marks]

d) Calculate the number of bits an Analog to Digital Converter (ADC) must have in order to handle a signal with a 96dB dynamic range.

[8 Marks]

Question 02

a) State the Faraday's law of Magnetic Induction.

[3 Marks]

b) Figure Q02 shows a toroidal core with μ_r = 10000, R = 5cm, r = 1cm and N = 300. The current is given by:

$$i(t) = 3\sin(300\pi t)$$

Compute the flux (ϕ) and the flux linkages (λ) . Then use Faraday's law of induction to determine the voltage induced in the coil.

[7 Marks]

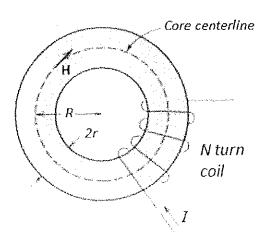


Figure: Q02

c) Describe the piezo-resistive effect in Silicon devices.

[4 Marks]

d) A quartz piezoelectric crystal having a thickness of 2mm and voltage sensitivity of 0.055 Vm/N is subjected to a pressure of 1.5 MN/m² (Mega-newton per Square meter). Calculate the voltage output. If the permittivity of quartz is 40.6 x 10⁻¹² F/m. Calculate its Charge sensitivity.

[6 Marks]

Question 03

a) List the main advantages of the Linear Variable Differential Transformer (LVDT) transducer.

[4 Marks]

b) A slide-wire potentiometer with a length of 100 mm is fabricated by winding wire with a diameter of 0.10 mm around a cylindrical insulating core. Determine the resolution limit of this potentiometer.

[4 Marks]

c) A LVDT under a certain input voltage has specifications which includes the following information:

Range: ± 30mm; Accuracy: 0.5%; Sensitivity: 5.0(mV/mm)

When its output is 0.05V,

i. Calculate the possible value of the linear displacement of its rod.

[6 Marks]

ii. Design and sketch an operational amplifier circuit to amplifier the output voltage by ten times.

[6 Marks]

Question 04

a) Discuss the differences between incremental and absolute rotary encoder.

[5 Marks]

b) A 10-bit Gray code optical encoder is producing the number 0011100101. Determine the indicated angle.

[5 Marks]

c) State three main advantages of Gray code.

[4 Marks]

d) An absolute optical rotary encoder in a certain application must have a resolution of 3°. Determine the number of tracks of this encoder.

[6 Marks]

Question 05

a) List the three common types of stepper motors. Briefly explain each type.

[5 Marks]

- b) Determine the basic step angle for the following stepper motors.
 - i. 6 stator phases 4 rotor teeth, 3-phase, single stack variable reluctance motor

[2 Marks]

ii. 4 stator phases - 6 rotor teeth, 2-phase, permanent magnet motor

[2 Marks]

iii. 4 stator phases - 5 rotor teeth, 2-phase, hybrid motor

[2 Marks]

c) Consider the single-stack, 3-phase variable reluctance stepper motor shown in Figure Q05. Find the step angle for the following phase-switching sequences.

[9 Marks]

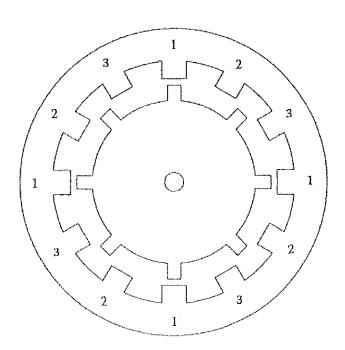


Figure: Q05

Question 06

- a) A shunt DC motor in steady state has the following parameters: $I_s = 300A$, $V_a = 500V$, $R_f = 50\Omega$, $R_a = 1\Omega$ and n = 40r/min.
 - i. Construct an equivalent circuit for the motor.

[3 Marks]

ii. Calculate the torque for starting the motor.

[3 Marks]

b) A permanent-magnet DC motor has the following parameters:

$$r_a = 8 \Omega$$
 and $k_v = 0.01 \text{ V. s/rad}$

The shaft load torque is approximated as $T_L = K\omega_r$, where $K = 5 \times 10^{-6}$ N.m.s. The applied voltage is 6V and $B_m = 0$. Calculate the steady-state rotor speed ω_r in rad/s.

[14 Marks]

Question 07

- a) A 3-phase, 60Hz, 200hp, 2400V, 8 pole, Y-connected synchronous motor has a phase synchronous reactance of 12Ω per phase and negligible resistance. The motor draws 150kW at a power angle of 18 degrees. Determine;
 - i. Excitation voltage

[3 Marks]

ii. Line current

[2 Marks]

iii. Power factor

[2 Marks]

iv. Under maximum power condition determine the torque

[3 Marks]

- b) A 3-phase induction motor is wound for four poles and is supplied from a 50Hz supply. Calculate;
 - i. The synchronous Speed

[3 Marks]

ii. The speed of the rotor when slip is 3%

[3 Marks]

iii. The rotor frequency when speed of rotor is 900rpm

[4 Marks]

Question 08

a) State three main functions of the pneumatic air service unit.

[3 Marks]

b) Draw the graphical symbol and label the ports for a pneumatic four-way, two-position Directional Control Valve (DCV) with pushbutton actuation.

[7 Marks]

c) Design a Pneumatic circuit diagram consisting of a 3/2-way, lever operated, spring return directional control valve to extend a single acting spring return cylinder. The air flow of the cylinder should be controlled and the diagram should include the FRL unit, compressor and other necessary controls.

[10 Marks]

END