

The Open University of Sri Lanka

Advanced Certificates in Science - Level 2 Part 1

Final Examination – 2020/2021

Duration: Three (03) hours

MHF2519 - Mathematics 1-Paper II

Date: 8th December 2021

Time: 9.30 am - 12.30 pm

Instructions

- You are allowed to use non-programmable calculators.
- Access to mobile phones during the test period is prohibited.
- Answer Six (06) questions including at least two questions from each Part.

Part A - Trigonometry

- Q1 (a). A bicycle with tires 90 cm in diameter is travelling at speed of 25 kmh^{-1} . Find the angular velocity of the tire in radians per second
 - (b). From the top of a building 30 m high, angles of depression of two objects at ground are observed as 60° and 45° respectively. If the top of the building and the two objects are in the same vertical plane, then find the distance between two objects.
 - (c). (i). If $5 \tan \alpha = 4$, find the value of $\frac{5 \sin \alpha 3 \cos \alpha}{\sin \alpha + 2 \cos \alpha}$
 - (ii). Evaluate, without using calculators, $\cos(-765^{\circ})$, $\sin(\frac{8\pi}{3})$, $\tan(\frac{9\pi}{4})$

Q2 (a). Prove the following identity.

$$\cot\left(\frac{\pi}{4} + \theta\right)\cot\left(\frac{\pi}{4} - \theta\right) = 1$$

- (b). Given that, $a(\tan \theta + \cot \theta) = 2$, $b(\tan 2\theta + \cot 2\theta) = 2$. Show that $a = \sin 2\theta$ and $b^2 = 4a^2(1 - a^2)$.
- (c). If $\cos 2\theta = \tan^2 x$, then show that $\cos 2x = \tan^2 \theta$
- Q3 (a). Using half angle formulae show that,

$$\cos\left(22\frac{1}{2}\right)^0 = \frac{\sqrt{2+\sqrt{2}}}{2}$$

- (b). Prove that $cos(A + B) cos(A B) = cos^2 A sin^2 B$.
- (c). Using $t = \tan\left(\frac{x}{2}\right)$ find the values of $\tan x$ as a rational function of t. Hence deduce $\sin x$ and $\cos x$ in terms of t.

Part B - Statics

- Q4. (a). When two forces are acting perpendicular to each other their resultant is $\sqrt{5}$ N. When those two forces are acting inclined at an angle 60^{0} each other the resultant is $\sqrt{2}$ N. Find two forces.
 - (b). The angle between forces F_1 and F_2 is 112^0 . The measure of the angle between their resultant and F_2 is 56^0 . If the magnitude of F_1 is 28 N, find the magnitude of F_2 .
- Q5 ABCDEF is a regular hexagon of side 2a m. Forces of magnitude P, 2P, Q, Q, 2P and P newtons act along the sides \overrightarrow{AB} , \overrightarrow{BC} , \overrightarrow{CD} , \overrightarrow{DE} , \overrightarrow{EF} and \overrightarrow{FA} respectively. If the resultant force of the system act through E, prove that it will act through E also. Find the magnitude of the resultant and the distance from E where its meets E and E also.

- Q6 (a). In triangle OAB, \underline{a} and \underline{b} are the position vectors of A and B. D is the midpoint of OA and C is the point on AB, such that AC:CB=2:3. Express \overrightarrow{OC} , \overrightarrow{BD} and \overrightarrow{CD} in terms of \underline{a} and \underline{b} .
 - (b). The position vectors of the points P and Q are \underline{p} and \underline{q} respectively. PQ divides internally at R and externally at S so that PR: RQ = PS: QS = m: 1. Show that

$$\overrightarrow{RS} = \frac{2m(\underline{p} - \underline{q})}{1 - m^2}.$$

Part C - Dynamics

- Q7 A particle moves with uniform acceleration f, in a horizontal line. At time t, displacement is a and at time 2t displacement is (a + b). By using equation of motion find,
 - (a). the acceleration f
 - (b). the speed of the particle after time 2t
 - (c). displacement after time 3t.
- Q8 (a). A particle is projected vertical upwards with a speed of 40 ms^{-1} . Find the speed after 5 s and the greatest height reach by the particle. $(g = 10 \text{ ms}^{-2})$
 - (b). A train starts from rest at station A and moves with uniform acceleration for 60s until it reaches a speed of 30 ms⁻¹. It travels at this constant speed for T seconds and then deceleration uniformly for 1.2 km, coming to rest at station B which is 14.1 km from station A.
 - (i). Sketch a speed-time graph for the journey.
 - (ii). Calculate the deceleration of the train
 - (iii). Calculate the value of T.
 - (iv). Calculate the total time for the journey.

Q9 A particle is projected with initial velocity of v at an angle \propto above the horizontal. If the greatest height of the particle is h and the horizontal range is a, show that

(a).
$$\propto = \tan^{-1} \left(\frac{4h}{a} \right)$$

(b).
$$v = \left[2g\left(h + \frac{a^2}{16h}\right)\right]^{\frac{1}{2}}.$$

(c). When h = 2a evaluate the values of \propto and v.

(END).