

The Open University of Sri Lanka

Advanced Certificates in Science - Level 2 Part 1

Final Examination - 2020/2021

Duration: Three (03) hours

MHF2519 - Mathematics 1-Paper I

Date: 7th December 2021

Time: 09.30 am - 12.30 pm

Instructions

• You are allowed to use non-programmable calculators.

• Access to mobile phones during the test period is prohibited.

• Answer five (05) questions including at least one question from part B.

Part A - Algebra

Q1. (a). Find the domain and the range of the following functions.

(i).
$$f(x) = \frac{x-1}{x+1}$$

(ii).
$$h(t) = \sqrt{t^2 + 1}$$

(b). (i). Find the domain and the range of the function, $f(x) = 3x^2 - 2$.

(ii). Sketch the graph of f(x), and mark the domain and range on it.

(c). Given that f(x) = 2x - 1 and $g(x) = 3x^2 + 2x - 1$. Find

(i). f(g(x)).

(ii). g(f(x)).

Q2. (a). Simplify the following expressions with positive indices.

(i).
$$\left(\frac{125}{64}\right)^{-\frac{1}{3}} \times \left(\sqrt[5]{32}\right)^3 \times 3^0$$

(ii).
$$\sqrt[3]{343x^{3/2}} \div x$$

(b). Solve the following index equation for x.

(i).
$$\frac{3^{1+x}}{27^{3+x}} = 9$$

(ii).
$$6^x \times 216^{3x} = 36^2$$

(iii).
$$3^{2x+1} - 28(3^x) + 9 = 0$$

- (c). Sketch the graph of $y = e^x$ and $y = e^{-x}$ in a same plane.
- Q3. (a). Given that $\log_7 2 = \alpha, \log_7 3 = \beta$ and $\log_7 5 = \gamma$, express the following expressions in terms of α, β and γ .
 - (i). log₇ 6
 - (ii). log₇ 75
 - (iii). $\log_7 \frac{15}{2}$
 - (b). Solve the following logarithmic equations for x.

(i).
$$\log_2(x+2) + \log_2(3) = \log_2(27)$$

(ii).
$$\log_2(x) + 6\log_x(2) - 5 = 0$$

(c). The change of base formula is given by

$$\log_b x = \frac{\log_a x}{\log_a b}.$$

By using the above formula evaluate log₄ 8.

- Q4. (a). Express the function of $f(x) = x^2 6x + 7$ in completed square form. Find its,
 - (i). the zeros (roots)
 - (ii). the line of symmetry
 - (iii). coordinate of the vertex and sketch the graph and mark all findings.
 - (b). Find the condition of k for the quadratic equation $x^2 kx + k = 0$, to have
 - (i). repeated real roots
 - (ii). two distinct real roots
 - (iii). no real roots
- Q5. (a). (i). α and β are roots of the equation $x^2 px + q = 0$. Find the equation whose roots are α^3 and β^3 .
 - (ii) If one root of the equation $ax^2 + bx + c = 0$ is three times of the other, then show that $3b^2 = 16ac$.
 - (b). Using the Principle of mathematical Induction, prove that $n^3 + 6n^2 + 8n$ multiple of 3 for all positive integers n.
- Q6. (a) The remainders when $p(x) = ax^3 + bx + c$ is divided by (x + 1), (x 1) and (x 2) are 4, 0 and 4 respectively. Find the values of a, b, c and determine all linear factors of p(x).
 - (b). Use the factor theorem to find the real roots of the following polynomial. $p(x) = x^4 + 4x^3 x^2 16x 12$

Part B - Coordinate Geometry

- Q7. The vertices of a triangle are A(1,0), B(2,3), C(5,2).
 - (a). Find the equation of the line AC.
 - (b). Find the equation of the line through B perpendicular to AC.
 - (c). Determine whether the triangle is right angled. (Hint: find the gradients of the sides AB and BC)
 - (d). Find the angle between AB and AC.
 - (e). Calculate the area of the triangle
- Q8 (a). If one end of a diameter of a circle, $x^2 + y^2 2x 2y 3 = 0$ is (2, 3) find the coordinate of the other end.
 - (b). Find the equation of the circle passing through the points (2, -1) and (1, 1) and having its center on the line y 3x + 7 = 0.

END.