The Open University of Sri Lanka Faculty of Natural Sciences B.Sc/ B. Ed Degree Programme

Department

: Mathematics

Level

: 05

Name of the Examination

: Final Examination

Course Code and Title

: ADU5308- Graph Theory

Academic Year

: 2020/2021

Date

: 27-03-2022

Time

: 1.30 p.m. - 3.30 p.m.

Duration

: 2 Hours

General Instructions

- 1. Read all instructions carefully before answering the questions.
- 2. This question paper consists of 06 questions in 05 pages.
- 3. Answer any 04 questions only. All questions carry equal marks.
- 4. Answer for each question should commence from a new page.
- 5. Draw fully labelled graphs where necessary.
- 6. Having any unauthorized documents/ mobile phones in your possession is a punishable offense.
- 7. Use blue or black ink to answer the questions.
- 8. Circle the number of the questions you answered in the front cover of your answer script.
- 9. Clearly state your index number in your answer script.

The Open University of Sri Lanka Department of Mathematics B. Sc. / B. Ed Degree Programme Final Examination - 2020/2021 Applied Mathematics— Level 05 ADU5308 – Graph Theory

DURATION: TWO HOURS

Date: 27 - 03 - 2022

Time: 1.30 p.m. - 3.30 p.m.

ANSWER FOUR QUESTIONS ONLY.

1.

a) Write the adjacency list, the incidence matric and the adjacency matric of the following graph.

- b) Determine whether the graph with given degree sequence exists or not. If exists draw it, otherwise explain why it does not exist.
 - I. 6 vertices of degrees 1, 1, 2, 3, 4 and 4.
 - II. 4 vertices of degrees 2, 2, 3 and 3.

c)

- I. Define a Hamiltonian cycle of a graph G.
- II. Five cities A, B, C, D and E, and the distance between the cities are given in the following weighted graph G. Solve the Traveling Salesman problem.

2.

a) Find the shortest path from S to T of the following weighted graph.

b) Use breath first search algorithm to find the spanning tree for the following graph G, choosing 'F' as the root.

c) Rewrite the mathematical expression $(3x^4 + 10y) - 2(z^3 - 6)$ using "*" for multiplication and "↑" for exponentiation. Then construct the binary rooted tree which represents this expression.

3.

a) Use Kruskal's Greedy algorithm to find a minimum weighted spanning tree for the following weighted graph:

Verify the above result using Prim's Greedy algorithm, by starting with the vertex B.

- b) Define the planer representation of a graph G.
 - I. Is $K_{2,4}$ planer? Justify your answer.
 - II. Is K_5 planer? Justify your answer.
- c) Draw the dual graph of W_4 . Is it self-dual? Justify your answer.

4.

- a) Consider the following digraph D = (V, A):
 - I. Find d(A, u) for all $u \in V$.
 - II. Find d(u, E) for all $u \in V$.
 - III. Determine whether it is strongly connected or not. Justify your answer.

b) The following digraph represents construction of a complete guesthouse where A-represents the beginning of the job and G-represent the completion of the job. Find the critical path and the minimum time required to build the complete guesthouse.

- 5.
- a) Consider the following graph G:
 - I. Find all the cut points, bridges and blocks of the graph G.
 - II. Define the Block graph B(G) and Cut point graph C(G) of a graph G. Obtain the corresponding Block graph and Cut point graph for the following graph G.

b) Suppose that three boys x, y, z know five girls a, b, c, d, e as given in the table.

Boy	Girls known by a boy				
X	a	С	е		
у	a	b	С		
Z	b	d			

- I. Draw the bipartite graph corresponding to this table of relationships.
- II. Check the marriage condition for this problem.

6.

- a) Consider the family $\mathfrak{F} = (S_1, S_2, S_3, S_4)$ of subsets of $E = \{1, 2, 3, 4, 5, 6\}$, where, $S_1 = \{1, 2, 6\}$, $S_2 = S_3 = \{1, 3, 4\}$ and $S_4 = \{5, 6\}$.
 - I. Obtain the corresponding incident matrix.
 - II. Find the term rank.
- III. Verify Konig Egervacy theorem.
- IV. Find all traversals of the above family if exist.
- b) State Max-flow, min-cut theorem.
 - I. Verify Max-flow min-cut theorem for the following Network N.
 - II. Define a saturated arc and write down the saturated arcs for the Network N.

