The Open University of Sri Lanka Faculty of Natural Sciences B.Sc. / B. Ed Degree Programme

Department

: Mathematics

Level

: 05

Name of the Examination

: Final Examination

Course Title and - Code

: Numerical Methods - ADU5307

Academic Year

: 2020/21

Date

: 09.12.2021

Time

: 1.30 p.m. To 3.30 p.m.

Duration

: Two Hours.

General Instructions

- 1. Read all instructions carefully before answering the questions.
- 2. This question paper consists of (6) questions in (2) pages.
- 3. Answer any (4) questions only. All questions carry equal marks.
- 4. Answer for each question should commence from a new page.
- 5. Draw fully labelled diagrams where necessary
- 6. Involvement in any activity that is considered as an exam offense will lead to punishment
- 7. Use blue or black ink to answer the questions.
- 8. Clearly state your index number in your answer script

1. (a) Using Newton-Raphson method, show that the iteration formula for finding the p^{th} root of a is given by $x_{n+1} = \frac{(p-1)x_n^p + a}{px_n^{p-1}}$ where a is a real number and $n = 1, 2, 3, \ldots$

Hence find $\sqrt{5}$ correct to four decimal places.

- (b) Show that for the equation $x^3 x 1 = 0$, there exists a root in the interval (1, 2). Using the Simple Iteration method find the root correct to four decimal places, taking $x_0 = 1.3$.
- 2. (a) Prove that

(i)
$$\Delta = E - I$$
,

(ii)
$$\nabla = I - E^{-1}$$
,

- (iii) $(I + \Delta)(I \nabla) = I$ where Δ , ∇ , E and I are the forward difference, backward difference, the shift and identity operators respectively.
- (b) The following data provide the distance y in nautical miles of the visible horizon for the given heights x in feet above the earth surface. Find y when x = 120 and when x = 380.

Height: x	100	150	200	250	300	350	400
Distance: y	10.63	13.03	15.04	16.81	18.42	19,90	21.27

3. State the Trapezoidal rule, Smpson's One -Third rule and Simpson's Three -Eighth rule.

Evaluate $\int_{0}^{6} \frac{dx}{1+x^2}$ correct up to 4 decimal places, by dividing the interval (0, 6) into 6 equal parts and using,

- (a) the Trapezoidal rule,
- (b) Simpson's One -Third rule,
- (c) Simpson's Three -Eighth rule.

Find also its actual value correct up to 4 decimal places and compare it with the above results.

- 4. (a) Applying Taylor series method of fourth order for the differential equation $\frac{dy}{dx} = x^2 + y^2$ subject to the initial condition y(0) = 1, evaluate y(0.1) and y(0.2) to four decimal places.
 - (b) Using the Taylor series method of fourth order for the differential equation $\frac{d^2y}{dx^2} = y + x\frac{dy}{dx}$ subject to the initial conditions y(0) = 1 and y'(0) = 0, evaluate y(0.1)) correct to four decimal places.
- 5. (a) Using Picard's method, find the first-three successive approximations to solve $\frac{dy}{dx} = 2xy$ with the initial condition y(0) = 1.
- (b) Applying Euler's method solve $\frac{dy}{dx} = y + x^2$ subject to the initial condition y(0) = 1 with step size h = 0.1, find the value of x(0.5) for the initial value problem $\frac{dy}{dx} = \frac{y x}{x + y}$.
 - 6. (a) Applying Runge-Kutta method of fourth order, solve $\frac{dy}{dx} = \frac{y^2 x^2}{y^2 + x^2}$ at x = 0.2, subject to the initial condition y(0) = 1.
 - (b) Applying Runge-Kutta method of fourth order, solve $\frac{d^2y}{dx^2} y^3 = 0$ at x = 0.1, subject to the initial conditions y(0) = 10 and y'(0) = 50