The Open University of Sri Lanka Faculty of Natural Sciences B.Sc/ B. Ed Degree Programme

Department

: Mathematics

Level

: 05

Name of the Examination

: Final Examination

Course Code and Title

: ADU5302- Mathematical Methods

Academic Year

: 2020/2021

Date

: 02.12.2021

Time

: 9.30 a.m.-11.30 a.m.

Duration

: 2 Hours

General Instructions

- 1. Read all instructions carefully before answering the questions.
- 2. This question paper consists of 06 questions in 03 pages.
- 3. Answer any 04 questions only. All questions carry equal marks.
 - 4. Answer for each question should commence from a new page.
 - 5. Draw fully labelled diagrams where necessary
 - 5. Relevant log tables are provided where necessary.
 - 6. Having any unauthorized documents/ mobile phones in your possession is a punishable offense
 - 7. Use blue or black ink to answer the questions.
 - 8. Circle the number of the questions you answered in the front cover of your answer script.
 - 9. Clearly state your index number in your answer script

1. (a) Find the inverse Laplace transform of each of the following: (where a standard notation has been used.)

(i)
$$\frac{s}{(s-2)^2(s+1)}$$

(ii)
$$\frac{3s-137}{s^2+2s+401}$$

(b) Using the convolution theorem, find the inverse Laplace transform of

$$H(s) = \frac{1}{(s+1)(s^2+1)}.$$

(c) Solve the following boundary value problem using the Laplace transform method:

$$\frac{d^2x}{dt^2} + 6\frac{dx}{dt} + 9x = 50\sin t \quad ; x = 0 \text{ and } \frac{dx}{dt} = 0 \text{ when } t = 0.$$

2. Consider the boundary value problem

$$\frac{d^2y}{dx^2} + \mu y = 0 \ ; \mu \in \Re$$

$$y(-\pi) = y(\pi)$$

$$y'(-\pi) = y'(\pi)$$

- (a) Find the eigenvalues and eigenfunctions of the problem.
 - (b) Obtain a set of functions, which are orthonormal in the interval $-\pi \le x \le \pi$.
- 3. (a) Find the Fourier Series of $f(x) = \sqrt{1 \cos x}$ in the interval $-\pi < x < \pi$.
- (b) Find the Fourier sine series and the Fourier cosine series of the following function:

$$f(x) = \begin{cases} \frac{2k}{L}x & \text{if } 0 < x < \frac{L}{2} \\ \frac{2k}{L}(L-x) & \text{if } \frac{L}{2} < x < L \end{cases}$$

4. (a) The Gamma function denoted by $\Gamma(p)$ corresponding to the parameter p is

defined by the improper integral
$$\Gamma(p) = \int_0^\infty e^{-t} t^{p-1} dt$$
, $(p > 0)$.

Evaluate each of the following:

(i)
$$\int_{0}^{1} \frac{dx}{\sqrt{-\ln x}}$$

(ii)
$$\int_{0}^{\infty} x^{m} e^{-ax^{n}} dx$$
; where m, n, a are positive constants.

(b) The Beta function denoted by $\beta(p,q)$ is defined by

$$\beta(p,q) = \int_{0}^{1} x^{p-1} (1-x)^{q-1} dx$$
, where p and q are positive parameters.

Use Gamma function and Beta function to evaluate each of the following integrals:

(i)
$$\int_{0}^{1/2} x^{3} (1 - 4x^{2})^{1/2} dx$$

(ii)
$$I = \int_{0}^{2a} x^2 \sqrt{2ax - x^2} dx$$
; a is a positive constant.

5. Let $J_p(x)$ be the Bessel function of order p given by the expansion

$$J_{p}(x) = x^{p} \sum_{m=0}^{\infty} \frac{(-1)^{m} x^{2m}}{2^{2m+p} m! \Gamma(p+m+1)}$$

Prove each of the following results:

(a)
$$4J_n''(x) = J_{n-2}(x) - 2J_n(x) + J_{n+2}(x)$$

(b)
$$\int J_3(x)dx + J_2(x) + \frac{2}{x}J_1(x) = 0$$

(c)
$$J_0''(x) = \frac{1}{2} [J_2(x) - J_0(x)]$$

(Hint: You may use the following recurrence relations, if necessary, without proof.)

$$\frac{d}{dx}\left\{x^{\rho}J_{\rho}(x)\right\} = x^{\rho}J_{\rho-1}(x)$$

$$\frac{d}{dx} \{ x^{-p} J_p(x) \} = -x^{-p} J_{p+1}(x).$$

$$J'_{p}(x) = \frac{p}{x} J_{p}(x) - J_{p+1}(x)$$

$$J_{p}'(x) = \frac{1}{2} \{J_{p-1}(x) - J_{p+1}(x)\}$$

6. The Rodrigue's formula for the n^{th} degree Legendre polynomial denoted by Pn(x) is given as

$$P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n.$$

 $P_n(x)$ is also given by the sum

$$P_n(x) = \sum_{m=0}^{M} \frac{\left(-1\right)^m \left(2n-2m\right)!}{2^m m! (n-m)! (n-2m)!} x^{n-2m}, \quad n = 0, 1, 2, \dots,$$

where $M = \frac{n}{2}$ or $\frac{n-1}{2}$, whichever is an integer.

- (a) Write down the function $5x^3 3x^2 + 5x 1$ in terms of Legendre Polynomials.
- (b) Prove each of the following results:

(i)
$$\int_{-1}^{1} p_n(x) dx = 0$$
, for $n \neq 0$

(ii)
$$\int_{-1}^{1} p_n(x) (1 - 2xt + t^2)^{-\frac{1}{2}} dx = \frac{2t^n}{2n+1}$$

where n is a positive integer.

(Hint:
$$(1 - 2xt + t^2)^{-\frac{1}{2}} = \sum_{n=0}^{\infty} t^n . p_n(x)$$
)