

THE OPEN UNIVERSITY OF SRI LANKA B.Sc. Degree Programme Level 5 -CYU 5302-ANALYTICAL CHEMISTRY FINAL EXAMINATION PAPER 2020/21

Date: 2020.12.23

Time: .1.30 p.m. – 3.30p.m.

Duration: Two hours

Instructions to students

This question paper consists five pages having four questions. Answer all four questions.

1. A student was given a sample solution having 0.10 M of each ion X^{2+} and Y^{2+} . He was asked to confirm the concentration of Y^{2+} using Gravimetry by precipitating Y^{2+} as $Y(OH)_2$ with the base $B(OH)_2$. Both X^{2+} and Y^{2+} reacts with the base.

Ksp of X(OH)₂ = $4.0 \times 10^{-3} \text{ mol}^3 \text{L}^{-3}$. Ksp of Y(OH)₂ = $1.0 \times 10^{-9} \text{ mol}^3 \text{L}^{-3}$.

- (i) Advise him on the following giving reasons.
 - (a) Addition of B(OH)₂ to the sample solution.
 - (b) Washing the precipitate
 - (c) Drying the precipitate

(30 marks)

- (ii) Do you think that selective precipitation of Y^{2+} is possible? Explain your answer. (10 marks)
- (iii) Calculate the pH of the solution at which selective precipitation of the maximum Y²⁺ amount is possible. (15 marks)
- (iv) The base B(OH)₂ (20.0 mL) was standardized with 0.02 M HCl solution using phenolphalein as the indicator. The end point obtained was 20.00 mL. $(K_{b1} = 6.5 \times 10^{-1} \text{ mol L}^{-1}, K_{b2} = 1.5 \times 10^{-5} \text{ mol L}^{-1})$
 - (a) Sketch and explain the titration curve of $B(OH)_2$ and $0.02\ M$ HCl. (15 marks)
 - (b) Calculate the concentration of B(OH)₂.

(10 marks)

- (v) Comment on the following statements.
 - (a) Precipitation of Y(OH)₂ can be obtained with lesser amount of B(OH)₂ if the sample solution was at a higher pH compared to a sample solution at a lower pH.
 - (b) The minimum detection limit of gravimetric analysis can be improved if the molecular weight of the precipitate is increased. (20 marks)

2. (i) A sample solution having a trace amount of MZ (a strong electrolyte) was analyzed for Z by carrying out a photometric titration with a standard solution of R which is a chelating agent. The reaction of MZ and R is as follows:

 $Z^{-}(aq) + R(aq) \rightarrow Q(aq)$

Compound/ion	Λ_{max} (wavelength of maximum absorption) (nm)	Molar absorptivity coefficient (mol ⁻¹ Lcm ⁻¹)
Z- (aq)	510	5.32 x 10 ⁸
R(aq)	210	1.35 x 10 ⁴
Q (aq)	512	3.34 X 10 ⁶

- (a) At what wavelength will you carry out the photometric titration? Justify your answer. (10 marks)
- (b) Sketch the titration curve accordingly (assuming that there is no dilution error). (10 marks)
- (c) Suggest a chemical method to have a higher absorbance value for R(aq). (10 marks)
- (d) Do you think a classical titration can be carried out between the above Z⁻ (aq) and R(aq)? Give reasons for your answer. (10 marks)
- (ii) A 0.01 M solution of MZ gave a 30% transmittance at 510 nm. To a 50.0 mL sample solution having MZ, a 50.0 mL of H $^+$ just enough to complete the formation of the weak acid HZ (K_a = 3 x 10 $^{-4}$) was added. The resultant solution gave an absorbance of 0.250 in similar conditions of measuring the transmittance. Calculate the concentration of MZ in the sample solution.

(20 marks)

(iii) A conductometric titration was carried out for 20.0 mL of 0.01 M the same MZ with 0.01 M HCl solution.

Ion	Molar conductivity at 25°C	Ion	Molar conductivity at	
	$(\Omega^{-1} \text{cm}^2 \text{mol}^{-1})$		25° C (Ω^{-1} cm 2 mol $^{-1}$)	
M^+	45.6	H ⁺	349.8	
Z^{-}	75.9	CI-	76.1	

- (a) Plot and explain the titration curve (assuming that there is no dilution error) . (20 marks)
- (b) In real conditions, the titration curve will not be linear due to dilution error. Suggest ways to improve the linearity. (10 marks)
- (c) State two differences between conductometric titrations and photometric titrations. (10 marks)

3. (i) A sample solution was having Q^{2+} , T^{2+} and A^{2+} metal ions. The concentrations of T^{2+} and A^{2+} were the same. The following titrations were carried out for the solution:

Titration I

A 25.0 mL of a sample solution was titrated with 0.02 M EDTA solution at pH 9. The end point reading was 40.00 mL.

Titration II

Then to the same sample solution, an excess amount of 0.01 M NaF was added and the titration was carried out with 0.02 M $\,\mathrm{X}^{2+}$ solution at pH 9. The end point reading was 25.00 mL. The following information are available.

Metal-	K _{MY} (at 0.1	pH range at	α _{Y4} at the	α _M at the
EDTA	ionic strength)	which the	existing pH	existing pH
complex		complex	range	range
		exists		
QY ²⁻	5.1×10^{16}	7-9	5.2×10^{-2}	3.1×10^{-2}
TY ²⁻	3.3×10^{15}	7-9	5.2 x 10 ⁻²	1
AY ²⁻	2.5×10^{15}	3-5	2.3×10^{-4}	1
XY ²⁻	3.0×10^{12}	7-9	5.2 x 10 ⁻²	1

$$TY^{2-} + NaF$$
 \rightarrow $TF_2 + Y^{4-} + Na^+$

- (a) In the titration I, which will react first with EDTA? Give reasons for youranswer. (10 marks)
- (b) Calculate the concentration of all three ions stating the assumptions made. (25 marks)
- (c) If NaF is not available in the lab, suggest a method briefly with calculations to find the concentration of all three ions. (10 marks)
- (d) The pH was maintained at 9 using a buffer. Calculate the concentration of HCl solution to be added to a 80.0 mL of a 0.1 M weak base solution, DOH (pK_a= 8.00) to prepare 100.0 mL of a buffer of pH 9. (15 marks)
- (ii) To a 25.0 mL of a sample solution, having Q²⁺ (0.01M) and T²⁺, a redox titration was carried out with a strong oxidizing agent E⁴⁺ (0.01 M) using a suitable indicator. The end point obtained was 30.00 mL.

$$Q^{2+} \rightarrow Q^{4+} + 2e \ (E^{\circ} = + 1.61 \ V)$$
 $T^{2+} \rightarrow T^{4+} + 2e \ (E^{\circ} = + 1.36 \ V)$
 $E^{4+} \rightarrow E^{2+} + 2e \ (E^{\circ} = + 2.00 \ V)$

- (a) Sketch and explain the titration curve according to the expected observations. (15 marks)
- (b) Calculate the concentration of T^{2+} . (15 marks)
- (c) If the above titration was a potentiometric titration, what differences Would you have observed? (10 marks)
- 4. (i) It was suspected that a particular mixture of chemicals contained three components: A, B, and C. To check this, the mixture was analyzed by thin layer chromatography (TLC). In this experiment a nonpolar solvent was used with a polar stationary phase and the following results were obtained when the sample was chromatographed along with the standards:

(a) Which suspected components (out of A, B and C) are present in the mixture?

(20 marks)

- (b) Are there other components in the sample? (10 marks)
- (c) What is the R_f value of the unidentified component? (10 marks)
- (d) Which of the suspected components is the most polar? and least polar?

(20 marks)

(e) What type of TLC is this?

(10 marks)

(ii) High-performance liquid chromatography (HPLC) was used to determine the amount of caffeine in a sample of a soft drink. The chromatogram below shows the detector response when a standard solution of caffeine with a concentration of 200 mg L⁻¹ is measured using the instrument.

- (a) What is the retention time of caffeine in this experiment? (10 marks)
- (b) On the chromatograph above, sketch the detector response when a commercial soft drink with a caffeine content of 350 mg L-1 is measured using the same instrument?

(20 marks)

