The Open University of Sri Lanka Faculty of Natural Sciences B.Sc/ B. Ed Degree Programme

Department

: Mathematics

Level

: 05

Name of the Examination

: Final Examination

Course Title and - Code

: ADU5306/APU3150- Fluid Mechanics

Academic Year

: 2019/20

Date

: 19.12.2020

Time

: 09.30 a.m - 11.30 a.m

Duration

: 2 hours

General Instructions

1. Read all instructions carefully before answering the questions.

- 2. This question paper consists of 06 questions in 03 pages.
- 3. Answer **04** questions only. All questions carry equal marks.
- 4. Answer for each question should commence from a new page.
- 6. Involvement in any activity that is considered as an exam offense will lead to punishment
- 7. Use blue or black ink to answer the questions.
- 8. Clearly state your index number in your answer script

1.

(a) Briefly describe the each of the followings:

[8 Marks]

- i. Steady and Un-steady flows
- ii. Uniform and Non-uniform flows
- iii. Compressible and Incompressible flows
- iv. Rotational and Irrotational flows.
- (b) The fluid flow field is given by $q = x^2yi + y^2zj (2xyz + z^2y)k$. Show that this is a case of a possible steady, incompressible flow field. [9 Marks]
- (c) Show whether the fluid flow field given by $q = e^{x}[(\sin z \cos y)i + \sin yj + \cos z k]$ is irrotational. [8 Marks]

2.

- (a) Show that $q = (\alpha y, \alpha x \beta, 0)$ represents the velocity of an incompressible fluid in an irrotational motion, where α , β are constants. Also,
 - i. find the velocity potential, and
 - ii. Obtain that streamlines are given by the curves of intersection of $a(x^2 y^2) 2\beta x = \text{constant}$ and z = constant. [12 Marks]

Show that equation of continuity can be reduced as $\nabla^2 \emptyset = 0$ for an incompressible fluid in an irrotational motion. Here \emptyset represents the velocity potential. Show that

$$\emptyset = \frac{x}{\left(\sqrt{x^2 + y^2 + z^2}\right)^3}$$

represents a possible motion satisfying the above reduced form.

Then what would be the fluid velocity?

[13 Marks]

3.

Derive the continuity equation of the form $\frac{D\rho}{D\tau} + \rho div(\underline{q}) = 0$, for any arbitrary control volume of a moving fluid irrespective of its shape and size. [8 Marks

- (a) Hence deduce the continuity equation, for an incompressible fluid in terms of Cartesian Coordinates. [5 Marks]
- (b) Consider the fluid flow field which is given by $\underline{q} = x^2 y \underline{i} + y^2 z \underline{j} (2xyz + yz^2)\underline{k}$. Prove that this is a case of a possible incompressible flow field. [6 Marks]
- (c) Given $v = 2y^2$ and w = 2xyz, the two velocity components. Determine the third component such that it satisfies the continuity equation. [6 Marks]

4.

- (a) Given Euler's equation of motion $\underline{F} \frac{1}{\rho} gradp = \frac{Dq}{Dt}$ for a perfect fluid, show that it can be written in the form $\underline{F} \frac{1}{\rho} gradp = \frac{\partial q}{\partial t} + grad(\frac{q^2}{2}) \underline{q} \times curl\underline{q}$. [10 Marks]
- (b) Using the result in Part (a), derive Bernoulli's equation for irrotational motion of an inviscid homogeneous fluid of constant density. [7 Marks]
- (c) Consider a horizontal nozzle discharging into the atmosphere. The inlet has a bore area of $500 \, mm^2$ and the exit has a bore area of $250 \, mm^2$. Assuming there is no energy loss calculate the flow rate when the inlet pressure is $400 \, Pa$. [8 Marks]

5.

- (a) A fluid is in equilibrium under the external force per unit mass \underline{F} on a flat plate.
 - i. Show that $\underline{F} \cdot dr = \frac{dp}{\rho}$
 - ii. If the external forces acting on the fluid is gravitational force only, then show that $-\rho g dz = dp$
 - iii. Furthermore, if $p = \exp(-z)$, then show that $p = p g(1 e^{-z})$ where p_0 is the pressure acting on the free space. [15 Marks]
- (b) Suppose a motion of an incompressible homogeneous fluid under no force is steady. The velocity at any point is given by $byi + ayj 2\alpha zk$, where a is a constant. Find the surface of equal pressure. [10 Marks]

6.

A right circular cylinder of radius a stands with its axis vertical and its base attached to a infinite rigid horizontal plane z = 0. It is surrounded by an ocean of incompressible non-viscous liquid of infinite extent, bounded below by the plane z = 0 and above by its free surface open to the atmosphere at pressure p_0 . The cylinder extends above the free surface of the ocean, whose height at a large distance from the cylinder is h. If the velocity components of the liquid at the point (x, y, z) in RCC, are $\left(\frac{wa^2y}{r^2}, -\frac{-wa^2x}{r^2}, 0\right)$ where $r^2 = x^2 + y^2$, show that the motion is irrotational and find the following quantities.

(a) The velocity potential of the motion.

- [8 Marks]
- (b) The liquid pressure at a point on the surface of the cylinder at a height z. [8 Marks]
- (c) The liquid pressure on the plane base z = 0, at a distance r from the axis. [4 Marks]
- (d) The height of the free surface above the plane z = 0, as it touches the cylinder.

[5 Marks]

