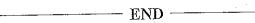
BACHELOR OF PHARMACY HONOURS - LEVEL 3 - 2019/20 BPU1110- GENERAL CHEMISTRY FINAL EXAMINATION

INDEX NO:

Part B - 04 Questions, Answer all questions

(70 marks)

Write answers in booklets provided.


- 1. a) Write the electron configurations of the following ions. (03 marks) Atomic numbers: Al = 13, Br = 35, Fe = 26 Al^{3+} , Br^- , Fe^{2+}
 - b) Draw the Lewis structures for the following molecules. (03 marks) NF₃, SCl₂, CO₃²⁻
 - c) Arrange the following compounds in the order of increasing boiling point. (03 marks) CH₃CH₂OH, CH₃OCH₃, CH₃-CH₃
 - d) Name three (03) metals which activate enzymes? (03 marks)
 - e) Calculate the dissolution enthalpy of AgCl in water using the data provided below. (06 marks)

Lattice energy of AgCl -916 kJ/mol, Solvation energy (Hydration enegry) -851 kJ/mol.

f) Determine whether the dissolution process of AgCl is endothermic or exothermic. (02 marks)

- 2. Consider a weak acid, HA.
 - a) Write the chemical equation for the ionization of HA in an aqueous solution. (02 marks)
 - b) Derive the Henderson-Hasselbalch equation for HA. (08 marks)
 - c) When 50.0 g of a monoprotic weak acid is dissolved in 1000 mL of water, ionization percentage of acid is recorded as 2.2. If the acid dissociation constant (Ka) is 6.5 x10⁻⁵, calculate the formula weight of the acid. (10 marks)
- 3. During an experiment, a student observed that the solubility (S) of a metal hydroxide M(OH)₂ is reduced by a factor of 12 in a 0.0200 M solution of MCl₂ (MCl₂ is a soluble salt).
 - a) Calculate the formal solubility (S) of the metal hydroxide. (09 marks)
 - b) Calculate the solubility product Ksp of the hydroxide. (02 marks)
 - c) Calculate the solubility of the metal hydroxide (in ppm) in the presence of 0.0200 M MCl₂ solution. Atomic weight of M is 40. (04 marks)
- 4. A student performed an experiment to find out the molarity of a commercial hydrogen peroxide solution by performing a titration against KMnO₄ solution. A 25.00 mL volume of the hydrogen peroxide solution was diluted to 250.0 mL in a volumetric flask. Then 25.00 mL of the diluted solution was mixed with 50 mL of water and 10 mL of 4 M H₂SO₄ and titrated with 0.020 M KMnO₄.
 - a) Identify the reducing agent and the oxidizing agent (02 marks)
 - b) Write the balanced redox reaction between permanganate ion and H₂O₂ in the acidic medium. (07 marks)
 - c) If the end-point of the titration was observed with 28.50 mL of titrant, calculate the molarity of the commercial H₂O₂. (06 marks)

