The Open University of Sri Lanka
Department of Mathematics
B.Sc/ B.Ed Degree Programme
Final Examination - 2019/ 2020
Applied Mathematics— Level 05
ADU5300/ APU3141 — Linear Programming

DURATION: - TWO HOURS

Date: 13-01-2020 Time: 01.30 p.m. -03.30 p.m.

ANSWER FOUR QUESTIONS ONLY.

- 01. Products 1 and 2 are produced by use of three machines: A, B and C. Each unit of product 1 requires 1 hour on machine A, 2 hours on machine B and no hours on machine C. Each unit of product 2 requires 1 hour on each machine. The time available on these three machines A, B and C is limited to 400, 600 and 300 hours per month respectively. Each unit of product 1 can be sold to yield a profit of Rs 50 and each unit of product 2 can be sold to yield a profit of Rs 80. Let X_1 and X_2 be the number of units per month to be produced by product 1 and 2 respectively.
 - (a) By stating the *constraints* clearly, model this as a linear programming problem to *maximize* the total profit (Z) under the given conditions.
 - (b) A table of simplex method for the above stated problem is given below:

Basic	X_1	X_2	S_1	S_2	S_3	Solution
X_1	1	0	1	0	-1	100
S_{2}	0	0	-2	1	1	100
X_2	0	1	0	0	1	300
\overline{Z}	0	0	50	0	30	29000

(Here, S_1 , S_2 , and S_3 represent the slack variables of the three constraints)

- Hence, (i) determine the feasibility and the optimality of this solution.
 - (ii) how many units of each product are to be produced per month to *maximize* the profit and what is the maximum profit according to this solution?
- (c) Verify the solution that you obtained in part (b) of the formulated problem in part (a) by means of *graphical* method.

Turn over

- 02. Define the degeneracy in linear programming.
 - (a) Solve the following linear programming problem using the *simplex* method:

Maximize
$$z = 3x_1 + 4x_2$$

Subject to $2x_1 + x_2 \le 8$,
 $-x_1 + 2x_2 \le 6$,
 $x_1 + x_2 \le 6$,
 $x_1 \ge 0, x_2 \ge 0$.

- (b) In part (a), identify the *constraint* that causes *degeneracy* and solve the problem *graphically* after dropping this *constraint* from the original problem. Hence, show that the *degeneracy* disappears and the same *optimal* solution is obtained.
- 03. (a) Solve the following linear programming problem (LPP) using the big- M method:

Minimize
$$z = 2x_1 + x_2$$

Subject to $x_1 + x_2 = 2$,
 $x_1 \ge 1$,
 $x_1 \ge 0$, $x_2 \ge 0$.

- (b) Write down the model for *phase 1* of the *two-phase* method of the above LPP.
- (c) Construct the initial tableau of the model for phase 2 of two-phase method of the above LPP.

It is given that the basic feasible solution of the model for phase 1 in part (b) as follows:

Basic x_1 x_2	Surplus Variable	Artificial Variable	Artificial Variable	Solution		
	A-1	x_2	for constraint 2 for constraint 1 for constraint 2			
$\overline{x_2}$	0	1	I	1	-1	1
x_{l}	1	0	-1	0	1	1
Z	0	0	0	1	1	0

- (i) Hence, obtain the optimal solution of phase 2 of the two-phase simplex method.
- (ii) Verify that the optimal solutions obtained using big-M and two-phase methods are same.

- 04. Describe a scenario, in the initial table of simplex method, that is both primal and dual feasible.
 - (a) Using the dual simplex method, find the optimal solution of the following primal problem:

Minimize
$$z = 2x_1 + 3x_2 + 4x_3$$

Subject to $x_1 + 2x_2 + x_3 \ge 4$,
 $2x_1 - x_2 + 3x_3 \ge 3$,
 $x_1 \ge 0$, $x_2 \ge 0$, $x_3 \ge 0$.

(b) Write down the dual of the above primal problem and solve it graphically.

Hence, verify that the *optimal* solutions of the objective functions of the *primal* and *dual* problems are equal.

05. A coach of a cricket team has to allocate six top order batting positions (*I*, *II*, *III*, *IV*, *V* and *VI*) to six batsmen (*A*, *B*, *C*, *D*, *E* and *F*) in a play-off of a tournament series. The runs scored by each batsman during the five initial rounds of the tournament series at these six positions are given in the following table:

	I	II	Ш	IV	V	VI
\overline{A}	32	35	25	60	50	40
\overline{B}	50	62	35	40	47	38
\overline{C}	35	40	32	20	50	45
\overline{D}	25	30	22	20	30	27
\overline{E}	50	65	70	60	75	55
\overline{F}	40	60	45	50	60	50

- (a) By clearly defining the decision variables and stating the constraints, model this as an assignment problem to maximize the total score at the play-off match.
- (b) Find the best position for each batsman in order to get 322 as the total score at the play-off match to qualify for the final match of the series.

06. A manufacturing concern has decided to produce three new products A, B and C at four similar factories I, II, III and IV. The unit manufacturing cost (in Rs) of each product at the four factories is displayed in the following table:

	I	II	Ш	IV
\overline{A}	3	6	8	4
\overline{B}	6	1	2	5
\overline{C}	7	8	3	9

Sales forecast indicates that 20, 28 and 17 units of product A, B, and C respectively should be produced per day. The factories can produce at the most 15, 19, 13 and 18 units respectively of the products per day.

- (a) Formulate the above problem as a transportation problem in order to *minimize* the total manufacturing cost.
- (b) To apply transportation algorithm, find the *initial basic feasible solution* (IBFS) using each of the following methods separately:
 - (i) North-West Corner,
 - (ii) Minimum-Cost,
 - (iii) Vogel's Approximation.
- (c) By selecting the best IBFS in part (a), apply the *transportation algorithm* to show that the *optimal* manufacturing cost is Rs 200.