

The Open University of Sri Lanka B.Sc. / B.Ed. Degree Programme Final Examination -2019/2020 Applied Mathematics—Level 05 ADU5307—Numerical Methods

Duration: Two Hours

Date: 27. 12. 2019

Time: 02.00 p.m. - 4.00 p.m.

Answer Four Questions Only.

- 1. (a) Show that recurrence relation to find the root of a given equation by method of False Position is given by $x_{n+1} = x_{n-1} \frac{f(x_{n-1})}{f(x_n) f(x_{n-1})} (x_n x_{n-1})$ where $n = 1, 2, 3, \ldots$
 - (b) Show that the equation $x^4 + x^2 80 = 0$, has a root in the interval [2, 3] and use method of False Position to find the root correct to four decimal places.
- 2. (a) Prove that

(i)
$$E = (1 - \nabla)^{-1}$$
,

(ii)
$$\delta = E^{1/2} - E^{-1/2}$$
,

(iii)
$$\mu = \frac{1}{2} \left(E^{1/2} + E^{-1/2} \right)$$
 where ∇ , δ , E and μ are the backward difference, the central difference, the shift and the average operators respectively.

- (b) Derive Gregory- Newton backward interpolation formula.
- (c) The table given below shows the melting point of an alloy of lead and zinc, where y is the temperature in ${}^{0}C$ and x is the percentage of lead in the alloy.

-	x%	40	50	60	70	80	90
	у°С,	184	204	226	250	276	304

Using suitable interpolation formula, find the melting point of the alloy containing 84% of lead.

3. (a) Derive Cubic Spline interpolation formula

$$M_{i-1} + 4M_i + M_{i+1} = \frac{6}{h^2}(y_{i-1} - 2y_i + y_{i+1})$$
, for $i = 1$ to $n-1$, where $f''(x_i) = M_i$ and $x_{i+1} - x_i = h$.

(b) Following values of x and y are given.

x	1	2	3	4
y	1	2	5	11

Using Cubic Spline interpolation method evaluate y(1.5).

- 4. (a) Derive the Simpson's One -Third Rule.
 - (b) If the interval [a, b] is divided into 2n sub intervals and corresponding ordinates are denoted by y_0, y_2, \dots, y_{2n} then show that the error in Simpson's One –Third rule is given by $|E| < \frac{(b-a)h^4}{180}M$, where M is the numerically greater value of $y_0^{iv}, y_2^{iv}, \dots, y_{2n-2}^{iv}$.
 - (c) Evaluate $\int_0^1 \frac{x^2}{1+x^3} dx$ using Simpson's One –Third rule with h = 0.25. Hence find an approximate value for $\ln 2^{1/3}$.
- 5. (a) (i) Derive formula for Picard's method to solve $\frac{dy}{dx} = f(x, y)$ subject to the initial condition $y(x_0) = y_0$.
 - (ii) Using Picard's method, find the first-three successive approximations to solve $\frac{dy}{dx} = 2x y^2$ with the initial condition y(0) = 0.
 - (b) Applying Euler's method with step size h = 0.1, find the value of x(0.5) for the initial value problem $\frac{dy}{dx} = \frac{4-x}{x+y}$ subject to the initial condition y(0) = 1.

- 6. (a) State fourth order Runge-Kutta algorithm to solve $\frac{dy}{dx} = f(x, y)$ subject to the initial condition $y(x_0) = y_0$.
 - (b) Using Runge-Kutta method of fourth order, solve $\frac{dy}{dx} = x + y$ subject to the initial condition y(0) = 1, at x = 0.1, 0.2 and 0.3.
 - (c) Solve the second order differential equation $\frac{d^2y}{dx^2} = y^3$ with the initial condition y(0) = 10, y'(0) = 5 using Runge-Kutta method of fourth order and evaluate y(0.1).

