The Open University of Sri Lanka
B.Sc/B.Ed. Degree Programme
Final Examination- 2019/2020
Applied Mathematics - Level 03
ADU3300/APU1140/ADE3300/APE3140 VECTOR ALGEBRA

Duration: Two Hours

Date: 28.12.2019 Time: 01.30 pm - 03.30 pm

INSTRUCTIONS TO CANDIDATES

- This paper consists of **TWO** Sections, Section A and Section B. Section A is compulsory and it consists of **ONE** Structured Essay question. You may answer in the space provided under each part of this question.
- Section B consists of **FIVE** essay type questions and answer only any **THREE** of them.
- Always start to answer each question in a new page and ensure that your answers to parts of questions are clearly labeled.
- At the end of the exam, attach Section A to the answer booklet and handover to the supervisor.
- The total marks for this paper is 100 while Section A carries 25 marks.

Section A

Index No:

1. Let A, B and C be three points lying on a plane P represented respectively by the position vectors $\underline{a} = 2\underline{i} + \underline{j} - \underline{k}$, $\underline{b} = \underline{i} + \underline{j} - 2\underline{k}$, and $\underline{c} = -\underline{i} + 3\underline{j} + 2\underline{k}$.

(a) Find the vectors \overrightarrow{AB} and \overrightarrow{AC} .

(b) Find the vector equation of the straight line l that passes through points A and B.

(c) Does the point D with the position vector $\underline{d} = 3\underline{i} + \underline{j}$ lie on l? Justify your answer.

(d) Show that \overrightarrow{AB} and \overrightarrow{AC} are perpendicular.

(e) Find the area of the triangle ABC.

(f) Find the equation of the plane P in the form $\underline{r} = \underline{u} + \alpha \underline{v} + \beta \underline{w}$ where $\alpha, \beta \in \mathbb{R}$ and \underline{u} , \underline{v} and \underline{w} are vectors.

(g) Find α and β if the point G with the position vector $-5\underline{i} + 5\underline{j} - 4\underline{k}$ lies on plane P.

Section B

Answer THREE Questions only.

- 2. Let \underline{a} , \underline{b} and \underline{c} be vectors given by $2\underline{i} + 3\underline{j} + p\underline{k}$, $\underline{i} + q\underline{j} 4\underline{k}$ and $\underline{i} 2\underline{j} + 5\underline{k}$ respectively, and $p, q \in \mathbb{R}$.
 - (a) Find p and q such that \underline{a} is perpendicular to $\underline{b} + \underline{c}$.
 - (b) Find p and q such that $\underline{a} \times \underline{b} = -24\underline{i} 4j + 5\underline{k}$.
 - (c) Are the vectors \underline{a} , \underline{b} and \underline{c} linearly independent when p=9 and q=-5? Justify your answer.
 - (d) Find the values of q such that $|\underline{b} + \underline{c}| = 3$.
- 3. Let two vectors $\underline{u} = 2\underline{i} \underline{j} + \underline{k}$ and $\underline{v} = 3\underline{i} + 12\underline{j} + 6\underline{k}$ lie on a plane P. Let C be any point on the plane P with the position vector $\underline{c} = \underline{i} \underline{j} + \underline{k}$, and M be any variable point on the same plane such that the length of CM is 5 units.
 - (a) Show that \underline{u} and \underline{v} are perpendicular.
 - (b) Find the unit vectors of \underline{u} and \underline{v} given by $\underline{\hat{u}}$ and $\underline{\hat{v}}$ respectively.
 - (c) Find the vector equation of the circle lying on the plane P containing the vectors \underline{u} and \underline{v} and having C as its centre and radius CM.
 - (d) Let N be another point on the above circle in (c) such that the vector \overrightarrow{CN} makes an angle $\tan^{-1} \underbrace{6}_{\underline{u}} \underbrace{\frac{3}{4}}_{\underline{u}}$ with vector \underline{u} . Find the position vector of N.
- 4. The vector functions $\underline{F}(t)$ and $\underline{G}(t)$ are given respectively by $\underline{F}(t) = e^{t}\underline{i} + e^{-t}\underline{j} + \frac{1}{1 e^{t}}\underline{k} \text{ and } \underline{G}(t) = e^{-t}\underline{i} + \frac{9e^{t}}{1 + e^{t}}\underline{j} + (1 e^{2t})\underline{k}.$
 - (a) Find the domain of each of $\underline{F}(t)$ and $\underline{G}(t)$.
 - (b) Find the value of t such that $\underline{F}(t).\underline{G}(t) = 5$.
 - (c) Find $\underline{F}(t) \times \underline{G}(t)$.
 - (d) Is $\underline{F}(0) \times \underline{G}(0)$ defined? Justify your answer.

5. Let P_1 and P_2 be two moving particles in space having position vectors in time given respectively by

$$\underline{S}_1(t) = t\underline{i} + (2t-1)\underline{j} + 3t\underline{k} \text{ and } \underline{S}_2(t) = t^2\underline{i} + (2t^2-3)\underline{j} + \underline{k}, t \ge 0.$$

- (a) Find the time t when P_1 is positioned $\sqrt{11}$ units from the origin.
- (b) Find the velocity vectors of the each particle P_1 and P_2 given by $\underline{V}_1(t)$ and $\underline{V}_2(t)$ respectively.
- (c) Find the time t when both P_1 and P_2 move with the same speed.
- (d) Find the magnitude of the accelerations of P_1 and P_2 .
- (e) Let the variable points A and B represent the positions of the particles P_1 and P_2 at any time $t \geq 0$. Let $l \equiv \underline{r} = 4\underline{i} 3\underline{j} + \underline{k} + \lambda(\underline{i} + \underline{j} + \underline{k})$ represent a straight line in the same space. Find the time t such that \overrightarrow{AB} is perpendicular to l.
- 6. (a) Let $\underline{r}(t) = 2t\underline{i} + t^2\underline{j} t^3\underline{k}$. Evaluate

i.
$$\int_1^2 \underline{r}(t) \cdot \frac{d\underline{r}}{dt} dt$$
,

ii.
$$\int_1^2 \underline{r}(t) \times \frac{d^2\underline{r}}{dt^2} dt$$
.

- (b) The acceleration vector of a moving particle at any time $t \geq 0$ is given by $\underline{a}(t) = e^t \underline{i} + e^{-t} \underline{j} + e^t \underline{k}$. The position of this particle when t = 0 is $-\underline{i}$ and the initial velocity is $\underline{i} + \underline{j} + 2\underline{k}$.
 - i. Find the velocity vector $\underline{V}(t)$ of the particle for any $t \geq 0$.
 - ii. Find the position vector $\underline{S}(t)$ of the particle for any $t \geq 0$.