

THE OPEN UNIVERSITY OF SRI LANKA FACULTY OF HEALTH SCIENCES DEPARTMENT OF BASIC SCIENCES

BACHELOR OF PHARMACY HONOURS- LEVEL 03 - 2018/19 BSU3340- PHARMACEUTICAL CHEMISTRY I NBT 02

DATE: 2 nd JANUARY 2019	DURATION: 1.5 HOURS	
	TIME: 09.00 a.m. – 10.30 a.m.	
REGISTRATI	ON NO:	

- 1. This question paper consists of 12 pages with 20 Multiple Choice Questions (Part A) and 04 Short Answer Questions (Part B).
- 2. Please fill the address sheet. (See last page)

IMPORTANT INSTRUCTIONS TO CANDIDATES

- Write your Registration Number in the space provided.
- Answer ALL questions.
- Multiple Choice Questions (Part A): Indicate answers in the answer sheet provided by placing a cross (X) in INK in the relevant cage.
- Answers in pencil will NOT be marked.
- Short Answer Questions (Part B): Write answers within the space provided.
- Do not remove any page/part of this question paper from the examination hall.
- Mobile phones and the electronic equipment are NOT allowed. Leave them outside.

BACHELOR OF PHARMACY HONOURS- LEVEL 03 - 2018/19 BSU3340- PHARMACEUTICAL CHEMISTRY I NBT 02

RE	GISTR	ATION NO:	

ANSWER SHEET FOR PART A

Q. No.	(a)	(b)	(c)	(d)
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				

BACHELOR OF PHARMACY HONOURS- LEVEL 03 - 2018/19 BSU3340- PHARMACEUTICAL CHEMISTRY I NBT 02

REGISTRATION NO:

Part A - Multiple Choice Questions

(40 marks)

Choose the most suitable answer and indicate with a 'X' in the answer sheet provided.

- 1. A Bronsted-Lowly base is defined as
 - a) a proton donor
 - b) a proton acceptor.
 - c) an electron pair donor
 - d) a hydroxide ion producer
- 2. What is the pH of CH₃COONa solution?
 - a) basic
 - b) acidic
 - c) neutral
 - d) 7
- 3. Of the following solutions, which has the greatest buffering capacity?
 - a) 0.125 M HF and 0.668 M NaF
 - b) 0.861 M HF and 0.909 M NaF
 - c) 0.821 M HF and 0.207 M NaF
 - d) They would all have the same capacity
- 4. A buffer solution can be made by dissolving equals moles of
 - a) HF and NaF
 - b) HCl and NaOH
 - c) KBr and Na₃PO₄
 - d) CH₃COOH and NaCl
- 5. How many significant figures does the number 0.008862 have?
 - a) 7
 - b) 4
 - c) 3%
 - c) 6

- 6. The conjugate acid and base of [HPO₄]²⁻ are, respectively:
 - a) $[PO_4]^{3-}$ and $[H_2PO_4]^{-}$
 - b) H₃PO₄ and [PO₄]³⁻
 - c) H₃PO₄ and [H₂PO₄]
 - d) $[H_2PO_4]^-$ and $[PO_4]^{3-}$
- 7. In which direction will the following equilibrium shift if a solution of CH₃COONa is added?

$$CH_3COOH(aq) \rightleftharpoons CH_3CO_2^-(aq) + H^+(aq)$$

- a) Shift to the right
- b) Shift to the left
- c) No change
- d) Cannot be predicted
- 8. What is the solubility product constant (Ksp) expression for Ag₃PO₄?
 - a) $Ksp = [Ag^{+}(aq)] [PO_4^{3-}(aq)]$
 - b) $Ksp = [Ag^{+}(aq)] [PO_4^{3-}(aq)]^{3}$

 - c) $Ksp = [Ag^{+}(aq)]^{\frac{3}{3}} [PO_4^{3-}(aq)]$ d) $Ksp = [3Ag^{+}(aq)]^{\frac{3}{3}} [PO_4^{3-}(aq)]$
- 9. The [OH-(aq)] is measured to be 3.3 x 10⁻³ mol/L in a 100 mL sample of a saturated solution of Al(OH)₃. What is the solubility of Al(OH)₃?
 - a) $1.1 \times 10^{-4} \text{ mol/L}$
 - b) 3.3 x 10⁻⁴ mol/L
 - c) 1.1 x 10⁻³ mol/L
 - d) $3.3 \times 10^{-3} \text{ mol/L}$
- 10. Ice is an example of
 - a) polar and non-polar molecular solid
 - b) non-polar molecular solid
 - c) polar molecular solid
 - d) neutral molecular solid
- 11. Substances that can react as both acids and bases are called
 - a) neutral compounds
 - b) conjugate bases
 - c) amphoteric substances
 - d) conjugate acids

- 12. In pure water, concentrations of
 - a) [H⁺] and [OH⁻] ions are equal
 - b) H⁺ ions is more
 - c) OH ions is more
 - d) Cl⁻ is more
- 13. Of the following compounds given below which compound is a diprotic oxyacid??
 - a) H₃PO₄
 - b) HF
 - c) H₂SO₄
 - d) CH₃COOH
- 14. which equation is correct regarding an exothermic reaction?
 - a) $\Delta H = 0$
 - b) $\Delta H < 0$
 - c) $\Delta G > 0$
 - d) $\Delta G < 0$
- 15. Which of the following acid/base titrations cannot determine the equivalence point in an accurate manner?
 - a) Strong acid/strong base
 - b) Weak acid/weak base
 - c) Strong acid/weak base
 - d) Weak acid/strong base
- 16. What is the pH at the neutralization point in the titration of 0.100 M NH₃ solution with 0.100 M HCl?
 - a) above pH 7
 - b) below pH 7
 - c) 7
 - d) cannot determine
- 17. Properties of a primary standard for use in acid-base titrations include
 - a) reactive with oxygen and low molar mass
 - b) stability and high purity
 - c) high purity and low solubility
 - d) low molar mass and low solubility

- 18. What is the [OH-(aq)] of a solution with pH of 8.0?
 - a) $1 \times 10^{-7} \text{ M}$
 - b) 1 x10⁻⁸ M
 - c) $1 \times 10^{-6} \text{ M}$
 - d) 1 x10⁻⁴ M
- 19. Which one is the correct pair of spectator ions involved in the following neutralization reaction?

$$NaOH(aq) + HCl(aq)$$
 \longrightarrow $NaCl(aq)_1 + H_2O(1)$

- a) Na⁺ and OH⁻
- b) H⁺ and OH⁻
- c) H⁺ and Cl⁻
- d) Na+ and Cl-
- 20. What is the result of the following calculation, reported to the correct number of significant figures? 0.12g + 0.003g = ?
 - a) 0.123g
 - b) 0.12g
 - c) 0.1g
 - d) 0.g

BACHELOR OF PHARMACY HONOURS - LEVEL 03 - 2018/19 BSU3340- PHARMACEUTICAL CHEMISTRY I

DOCCOSTO III.	
NBT 02	
	REGISTRATION NO:
	Part B -Short Answer Questions
	(60 marks)

Write answers in the space provided.

1. a) Consider a weak acid, HF. Provide the chemical equation for the ionization of HF in aqueous solution. (05 marks)

b) Derive the Henderson-Hasselbalch equation for HF. (05 marks)

c) Calculate the pH of a buffer solution containing a mixture of 0.15 M HF and 0.20 M F^- . (*Ka* for HF is 6.8 x 10^{-4}) (10 marks)

d) Explain whether NH₄Cl solution is acidic or basic. (05 marks)

2. a) Write the expression for the solubility product, Ksp, of the saturated solution of Mg(OH)₂. (05 marks)

b) If the solubility of Mg(OH)₂ is 7.6 mg/L, Calculate the Ksp for Mg(OH)₂. Molar mass of Mg(OH)₂ is 58.3 g/ mol. (10 marks)

3. A portion of 20.0 mL was withdrawn from a saturated calcium hydroxide solution. This was completely neutralized by 19.00 cm³ of hydrochloric acid solution with a molar concentration of 0.050 moldm⁻³. Calculate the solubility product of calcium hydroxide. (10 marks)

4. Balance the following equation. (Show balanced half reactions and the balanced complete reactions) (10 marks)

$$NO_3$$
 (aq) + $I_2(s)$ NO (g)+ IO_3 (aq)

Reg No:	
Name:	
Address:	

**************	•••••
