

The Open University of Sri Lanka
B.Sc. Degree Programme
Applied Mathematics - Level 04
No Book Test-2019/2020
ADU4301/ADE4301 — Newtonian Mechanics I

DURATION: ONE HOUR

Date: 13. 08. 2020

Time: 04.15 p.m. -05.15 p.m.

ANSWER ALL QUESTIONS.

- 1. A small object P, of mass m_0 , is projected vertically upwards from the ground with speed U. As P moves upwards it picks up droplets of moisture from the atmosphere. The droplets are at rest immediately before they are picked up. In a model of the motion, P is modelled as a particle, air resistance is assumed to be negligible and the acceleration due to gravity is assumed to have the constant value of g. When P is at a height x above the ground, the combined mass of P and the moisture is m_0 (1 + kx), where k is a constant, and the speed of P is v.
 - (a) Show that, while *P* is moving upwards $\frac{d}{dx}(v^2) + \frac{2kv^2}{(1+kx)} = -2g$
 - (b) Show that $v^2 = \frac{A}{(1+kx)^2} \frac{2g}{3k}(1+kx)$, where A is an arbitrary constant.
 - (c) If $U = \sqrt{2gh}$ and $k = \frac{7}{3h}$ then find, in terms of h, the height of P above the ground when P first comes to rest.
- 2. A uniform rod AB of mass m and length 4a is free to rotate in a vertical plane about a horizontal axis through the point O of the rod, where OA = a. The rod is slightly disturbed from rest when B is vertically above A.
 - (a) Find the magnitude of the angular acceleration of the rod when it is horizontal.
 - (b) Find the angular speed of the rod when it is horizontal.
 - (c) Calculate the magnitude of the force acting on the rod at O when the rod is horizontal.