The Open University of Sri Lanka

B.Sc/B.Ed. DEGREE, CONTINUING EDUCATION PROGRAMME

No Book Test 2019/2020

Level 03 Pure Mathematics

PEU3202 Vector Spaces

Duration: - One Hour

Date: - 10-08-2020

Time: 4.15 p.m. to 5.15p.m.

Answer four questions only

1.

- (a) Let V be the vector space of all continuous functions $f:[0,a]\to\mathbb{R}$, where a>1. For arbitrary $p(x),q(x)\in V$ define $\langle p(x),q(x)\rangle=\int\limits_0^1p(x)q(x)dx$. Show that V is an inner product space.
- (b) Let $M = \{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} | a, b, c, d \in \mathbb{R} \}$. Note that M is a vector space over the field \mathbb{R} under the usual matrix addition and scalar multiplication.

Let the mapping $T: M \to M$ be defined by $T(\begin{bmatrix} a & b \\ c & d \end{bmatrix}) = \begin{bmatrix} a+b & c+d \\ 3c & d \end{bmatrix}$.

- (i) Show that T is a linear transformation,
- (ii) Determine whether the following sets are invariant subspaces of the vector space M over the field \mathbb{R} under T

(I)
$$W = \left\{ \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix} \middle| a \in \mathbb{R} \right\}$$

(II)
$$W = \{ \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} | a, b, c \in \mathbb{R} \}$$

2.

- (a) Let u and v be any two vectors of a Euclidian Space.
 - (i) Define the angle between u and v
 - (ii) Prove that $||u + v|| \le ||u|| + ||v||$
- Show that the three vectors $u_1 = (1, 2, 2)$, $u_2 = (1, -1, 2)$ and $u_3 = (1, 0, 1)$ form a basis for E^3 , the usual Euclidean three space. Construct an orthonormal basis for E^3 out of $\{u_1, u_2, u_3\}$ using the Gram-Schmidt process.