

The Open University of Sri Lanka
Foundation in Science & Technology
Final Examination 2017/2018
PAF2201 – Combined Mathematics I
Duration:- Three (3) Hours.

Date: 15.09.2017 Time: 9.30 a.m.- 12.30 p.m.

PART A

25 marks for each question Answer all questions

- 1) Given that $\sin \alpha = \frac{3}{5}$ and $\cos \beta = \frac{9}{41}$, find the values of a) $\cos (\alpha + \beta)$ b) $\sin (\alpha - \beta)$
- 2) (i) If $\log_a x = y$, show that $\log_x a = \frac{1}{y}$
 - (ii) Solve the equation, $log_3x -3 log_x 3 +2 = 0$
- 3) (i) If α and β are the roots of the quadratic equation $ax^2 + bx + c = 0$. Find the quadratic equations whose roots are

(i)
$$\frac{1}{\alpha}$$
 and $\frac{1}{\beta}$ (b) α^3 and β^3

- 4) If $x^2 + y^2 = 13$, and xy = 6, x > y > 0. Find the values for $(x + y)^2$ and $(x y)^2$. Hence find the values of x and y.
- 5) Find the coefficient of x^{10} in the binomial expansion of $(2x^2 \frac{3}{x})^{11}$
- 6) Find the modulus and argument of the complex number $\left(\frac{1-i}{1+i}\right)$.
- 7) Show that two circles $S_1 = x^2 + y^2 4x + 2y = 0$ and $S_2 = x^2 + y^2 + 10y + 20 = 0$ touches each other externally and find the contact point of the two circles. Find the equation of the common tangent.

8) Evaluate the limit

$$\lim_{\theta \to 0} \left(\frac{1 - \cos 2\theta}{\theta^2} \right)$$

9) Differentiate the function with respect to x

$$Y = \sqrt{\frac{1-x^2}{1+x^2}}$$

10) Integrate the function with respect to x

$$\int \frac{x^3 + x + 1}{1 + x^2} \, \mathrm{d}x$$

PART B

150 marks for each question in part B Answer five questions only.

- 11) a) Prove the following identities
 - (i) $\frac{\sin 2\theta + \sin \theta}{1 + \cos \theta + \cos 2\theta} = \tan \theta$
 - (ii) $\sec^2 \theta$ (1 + $\sec 2\theta$) = $2\sec 2\theta$
 - b) Give the general solutions of $\sin x = p$, $\cos x = p$ and $\tan x = p$ (where $-1 \le p \le +1$)
 - c) Find the general solution of the following equations
 - (i) $\sqrt{2}\sec\theta + \tan\theta = 1$
 - (i) (ii) $\tan 2\theta \tan \theta = 1$
- 12) a) Let $\lambda \in \mathbb{R}$ and $f(x) = x^2 + 2\lambda x + 2\lambda + 15$, α and β are the roots of the equation f(x) = 0.
 - (i) Find the values of λ such that α and β are real.
 - (ii) Find the quadratic equation whose roots are $2\alpha + \alpha\beta$, $2\beta + \alpha\beta$ with the terms of λ .
 - a) When the polynomial function $f(x) = x^3 + ax^2 + bx + 2$ is divided by (x-1) remainder is 4 and when it is divided by (x+2) the remainder is also 4. Find the values of a and b.
- 13) a) Using the Principle of Mathematical Induction, show that for each positive integer n, $1+4+7+\cdots+(3n-2)=\frac{n}{2}$ (3n-1).
 - b) Find constants A and B such that $\frac{1}{r(r+1)} = \frac{A}{r} + \frac{B}{r+1}$ for r=1,2,

Hence find $\sum_{i=1}^{n} \frac{1}{\dot{r}(r+1)}$ and deduce that

$$\frac{1}{(n+1)(n+2)} + \frac{1}{(n+2)(n+3)} + \dots + \frac{1}{2n(2n+1)} = \frac{n}{(n+1)(2n+1)}$$

- 14) a) In how many different ways can the letters of the word "THIMBIRIGASYAYA" be arranged when all letters are considered. In how many of these arrangements will all the 'A's be adjacent.
 - b) Find the greatest term and the greatest coefficient of $(2+3x)^8$.
 - c) Express each of the following in polar (r, θ) form
 - (i) z = 1 + i
- (ii) $z = 1 \sqrt{3} i$
- 15) a) Find the equation of the line which passes through the point of intersection of two straight lines 3x 5y 2 = 0 and x + y 4 = 0 and passes through the point (-4,3).
 - b) A circle passes through the points P,Q,R which have the coordinates (3,0), $(0,\sqrt{3})$, $(0,-\sqrt{3})$ respectively.
 - (i) Find the equation of the circle
 - (ii) Find the coordinate of the centre and the radius of the circle.
 - (iii) Find the length of the minor arc QR.
- 16) a) Evaluate the limit

$$\lim_{\theta \to 0} \left(\frac{\sin 5\theta + \tan 3\theta}{2\theta} \right)$$

- b) If $\sqrt{1-x^2} y = \sin^{-1} x$ prove that $(1-x^2) \frac{d^2 y}{dx^2} 3x \frac{dy}{dx} y = 0$
- c) Differentiate with respect to x

(i)
$$y = \left(\frac{1+2x}{1-3x}\right)^3$$

(ii)
$$y = \ln |x + \sqrt{x^2 + 1}|$$

17) a) Evaluate the following indefinite integrals

(i)
$$\int (x^4 + 3x^3 + \frac{1}{x^2} + \frac{1}{x} + 4) dx$$

$$(ii) \int \frac{1}{\sqrt{25-x^2}} \, \mathrm{d}x$$

$$(iii) \int \left(\frac{1-\sin x}{1+\sin x}\right) \mathrm{d}x$$

b) Evaluate the following definite integrals

$$(i) \int_4^9 \left(2x + 3\sqrt{x}\right) \mathrm{d}x$$

$$(ii) \int_0^1 x e^{-2x} \, \mathrm{d}x$$