The Open University of Sri Lanka
B.Sc.\B.Ed. Degree Programme
Final Examination- 2016/2017
Pure Mathematics - Level 03
PUU1141 \PUE3141—Foundation of Mathematics

Duration: - Two hours

Date: - 03-01-2018

Time: - 9.30 a.m. - 11.30 a.m.

Answer Four questions only.

- 1. (a) State, without proof, the De Morgan's Laws for two sets.
 - (b) Let A and B be arbitrary sets. Without using Venn Diagrams prove the following.
 - (i) $A \setminus (A \setminus B) = A \cap B$.
 - (ii) $A \cap B = \emptyset$ if and only if $A \subseteq B^c$.
 - (iii) $A \setminus (A \cap B) = (A \cup B) \setminus B$.
 - (c) The relations on the set \mathbb{Z} is defined as follows:
 - α : xRy if x > y.
 - β : xRy if xy is a square in \mathbb{Z} .
 - γ : xRy if x + y = 0.

Determine which of the above relations are reflexive / symmetric / transitive or antisymetric.

- 2. Prove or disprove each of the following statements.
 - (i) There are infinitely many $n \in \mathbb{N}$ such that $n^2 + n + 1$ is a multiple of 3.
 - (ii) There are infinitely many $n \in \mathbb{N}$ such that $n^2 + n + 1$ is not a multiple of 3.
 - (iii) There are infinitely many $n \in \mathbb{N}$ such that 6n + 5 is a multiple of 15.
 - (iv) There are infinitely many $n \in \mathbb{N}$ such that 6n + 5 is not a multiple of 25.
- 3. (a) Let x be a rational number such that x^2 is a natural number. Prove that x is an integer.
 - (b) Prove that for each natural number n, the pair of natural numbers n and n + 1 are relatively prime.
 - (c) Let n be a natural number such that $n \ge 5$. Prove that, if n and n+2 are prime numbers then n+1 is a multiple of 6.
 - (d) Prove that for each $n \in \mathbb{N}$, such that $n \geq 7$, there exist $l, m \in \mathbb{N}$ such that n = 2l + 3m.

- 4. (a) Let $E = \{2n : n \in \mathbb{N}\}$, the set of even positive integers. Find a bijection from E to \mathbb{Z} .
 - (b) Find a bijection from (0,1] to [5,6).
 - (c) Let $f(x) = \frac{1+x}{1-x}$, $x \in \mathbb{R} \setminus \{1\}$. Show that f is a bijection from $\mathbb{R} \setminus \{1\}$ to $\mathbb{R} \setminus \{-1\}$.
 - (d) Let $g(x) = x^2 + 3$, $x \in \mathbb{R}$. Let A = [0, 3) and B = [3, 20). Find $f^{-1}(A)$ and $f^{-1}(B)$.
- 5. (a) Prove that if a set A of real numbers has a supremum then supremum is unique.
 - (b) Let A be a non empty bounded subset of \mathbb{R} such that $\inf A \notin A$ or $\sup A \notin A$. Prove that the set A has infinitely many elements.
 - (c) Let A = [0, 1), $B = \left\{\frac{1}{n}: n \in \mathbb{N}\right\}$, $C = \left\{\frac{n-1}{n}: n \in \mathbb{N}\right\}$.
 - (i) Prove that each of the above sets is bounded.
 - (ii) Write down the supremum and infimum of each of the above sets. Prove your answer.
 - (iii) Does the minimum of $C \setminus B$ exist? Justify your answer.
- 6. Let x, y and z be positive integers such that $x^2 + y^2 = z^2$. Prove that,
 - (i) $x^2 + y^2$ is even if and only if z is even.
 - (ii) xyz is even.
 - (iii) x is even or y is even.
 - (iv) xyz is a multiple of 3.