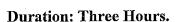
The Open University of Sri Lanka

B.Sc./B.Ed. Degree Programme

Final Examination-2016/2017

Pure Mathematics- Level-05

PUU 3244 - Number Theory & Polynomials



Date: 05-01-2018

Time: 2.00p.m. To 5.00p.m.

Answer Five questions only. (State clearly any result that you used, without proof.)

- (01). (a) Define each of the following:
 - (i) Inductive set.
 - (ii) Well ordered set.
 - (iii) Division Algorithm.
 - (b) Prove each of the following using Mathematical Induction:

(i)
$$\sum_{i=1}^{n} i! . i = (n-1)! - 1$$

(ii) Let
$$A = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix}$$
, then $A^n = \begin{pmatrix} \cos n\alpha & \sin n\alpha \\ -\sin n\alpha & \cos n\alpha \end{pmatrix}$

- (c) Show that the equation n + 10 = 7 has no solution in N where N is the set of natural numbers.
- (d) If $x, y \in \mathbb{R}$ and $m, n \in \mathbb{N}$ then prove each of the following

$$(i) x^m \cdot x^n = x^{m+n}$$

$$(ii)(x^m)^n = x^{mn}$$

$$(iii)(xy)^n = x^n y^n$$

(02) (a) Prove that if $n \in \mathbb{N}$ there is no $m \in \mathbb{N}$ such that n < m < n + 1.

(You may use the following propositions without proof.

- If $m, n \in \mathbb{N}$ and m > n, then $m n \in \mathbb{N}$.
- There is no natural number n such that 0 < n < 1.)
- (b) If $b \in \mathbb{Z}$ and $B = \{z \in \mathbb{Z} ; z \ge b\}$ then prove that B is a well ordered set.

(You may use the following propositions without proof. If T is a non-empty subset of \mathbb{N} , then T has a least element.)

- (c) Prove each of the following:
 - (i) If c|b and b|a then c|a
 - (ii) If b|a and b|c then $b|(a \pm c)$
 - (iii) If b|a and $c \in \mathbb{Z}$ then b|ac
- (d) Show that $n^2 n$ is an even number when n is an integer.
- (03) (a) If S is a non-empty subset of \mathbb{Z} such that,

$$s_1, s_2 \in S \implies s_1 + s_2 \in S \text{ and } s_1 - s_2 \in S.$$

Show that $S = \{0\}$ or S contains a least positive integer d such that $S = \{nd : n \in \mathbb{Z}\}.$

- (b) Show that $(9^n 1)$ is divisible by 8 for all integers.
- (c) If $a, b, c \in \mathbb{Z} \setminus \{0\}$ then prove that (a, b, c) = ((a, b), c); where (a, b) is the greatest common divisor of a, b and (a, b, c) indicates the same definition.
- (d) Compute the greatest common divisor d, if (7469, 2464, 132). Express d in the form d=7469a+2464b+132c, where a,b and c are any integers.
- (e) Find the least common multiple of 12012 and 1105.
- (04) (a) If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then prove each of the following:

$$a + c \equiv b + d \pmod{m}$$

$$a-c \equiv b-d \pmod{m}$$

$$ac \equiv bd \pmod{m}$$

- (b) Prove that for given $n \in \mathbb{Z}$ there exists a unique $r \in \mathbb{Z}_m$ such that $n \equiv r \pmod{m}$.
 - (c) If n is an odd integer then prove that $n^2 \equiv 1 \pmod{4}$.
 - (d) Find the integer in \mathbb{Z}_7 to which $9 \times 13 \times 19 \times 400 \times 52$ is congruent modules 7.
 - (e) Prove or disprove that every linear congruence has a solution.

- (5) (a) Let R be a commutative ring. If f(x), $g(x) \in R[x]$ and g(x) is monic, then prove that there exists a unique q(x), $r(x) \in R[x]$ such that f(x) = q(x)g(x) + r(x) with r(x) = 0 or $\deg(r(x)) < \deg(g(x))$.
 - (b) If $f(x) = x^4 x^3 x^2 + 1$ and $g(x) = x^3 1$ are polynomials over $\mathbb{Q}[x]$ then find the greatest common divisor d(x) of f(x) and g(x) and express it in the form d(x) = f(x)u(x) + g(x)v(x) where $u(x), v(x) \in \mathbb{Q}[x]$.
 - (c) Let $R = \{a + ib\sqrt{5} : a, b \in \mathbb{Z}\}$. Let $f(x) = 6x^2 + 2\sqrt{5}ix 1$ and $g(x) = (1 + i\sqrt{5})x 1$ be polynomials in R[x].
 - (i) Show that the units in R are ± 1 .
 - (ii) Show that g is a divisor of f.
 - (ii) Show further that f and g do not have a greatest common divisor.
- (6) (a) State and prove Eisentein's irreducibility criteria.
 - (b) Determine whether the polynomial $f(x) = 7x^4 + 12x^3 + 12x^2 + 6x + 1$ is irreducible in $\mathbb{Z}[x]$.
 - (c) Find all monic irreducible polynomials of degree 2 in $\mathbb{Z}_3[x]$.
- (7) (a) (i) Let $f(x) = \sum_{i=0}^{n} a_i x^i \in \mathbb{Z}[x]$ and $n \ge 1$. If $\alpha \in \mathbb{Q}$ is a zero of f(x) and $\alpha = \frac{r}{s}$ such that (r, s) = 1, then show that $r \mid a_0$ and $s \mid a_n$.
 - (ii) Find all rational roots of the polynomial $14x^4 51x^3 + 56x^2 21x + 2$ over \mathbb{Q} .
 - (b) (i) State Factor Theorem.
 - (ii) Find all factors of $f(x) = 3x^4 3x^3 6$ in $\mathbb{Q}[x]$, $\mathbb{R}[x]$ and $\mathbb{C}[x]$.
- (8) (a) Let $f(x) = \sum_{i=0}^{n} a_i x^i \in \mathbb{C}[x]$, $a_n \neq 0$ and $\alpha_1, \alpha_2, \ldots, \alpha_n$ are the zeros of f(x) in \mathbb{C} .

Show that (i)
$$a_n S_m + a_{n-1} S_{m-1} + \dots + a_0 S_{m-n} = 0$$
, if $m > n$,

(ii)
$$a_n S_m + a_{n-1} S_{m-1} + \dots + a_{n-m+1} S_1 + m a_{n-m} = 0$$
, if $m \le n$,

where
$$S_r = \sum_{i=0}^n \alpha_i^r$$
.

(b) If $a, b, c \in \mathbb{C}$ such that a+b+c=0, then prove that,

$$6(a^5 + b^5 + c^5) = 5(a^2 + b^2 + c^2)(a^3 + b^3 + c^3).$$

