The Open University of Sri Lanka Department of Mathematics B.Sc. / B.Ed. Degree Programme Pure Mathematics – Level 05 Final Examination - 2016/2017

PUU3240 - Ring Theory & Field Theory

Duration: Three Hours

Date: 27.12.2017

Time: 09.30a.m. - 12.30p.m.

Answer Five Questions Only.

01. Consider the set of all integers ℤ together with the binary operations ⊕ and ⊕ defined by

$$a \oplus b = a + b - 1$$
 for all $a, b \in \mathbb{Z}$, and $a \otimes b = ab - a - b + 2$ for all $a, b \in \mathbb{Z}$.

(i) Show that Z is commutative under the binary operations ⊕ and ⊗.

[02Marks]

(ii) Show that distributive law hold under the binary operations ⊕ and ⊗.

[04Marks]

(iii) Show that the additive identity $\mathbf{0}_{\mathbb{Z}}$ is 1 and the multiplicative identity $\mathbf{1}_{\mathbb{Z}}$ is 2 under the binary operations \oplus and \otimes respectively.

[04 Marks]

(iv) Find the additive inverse for all $\alpha \in \mathbb{Z}$. Justify your answer.

[04Marks]

(v) Find the multiplicative identity for all $a \in \mathbb{Z} \setminus \{1\}$. Justify your answer.

[04 Marks]

(vi) Solve the equation $x^2 \oplus 0 = 0_{\mathbb{Z}}$ in $(\mathbb{Z}_r, \oplus_r \otimes)$.

[02 Marks]

02. (a) Let
$$S = \left\{ \begin{pmatrix} a & 2b \\ b & a \end{pmatrix} | a, b \in \mathbb{Z} \right\}$$
 and $R = \left\{ \begin{pmatrix} p & q \\ r & s \end{pmatrix} | p, q, r, s \in \mathbb{Z} \right\}$.

(i) Show that S is a subring of R under the usual addition and multiplication.

[04 Marks]

(ii) Is S an ideal of R? Justify your answer.

[04 Marks]

(b) Define
$$f: S \to \mathbb{Z}[\sqrt{2}]$$
 by $f\begin{pmatrix} a & 2b \\ b & a \end{pmatrix} = a + b\sqrt{2}$ for all $\begin{pmatrix} a & 2b \\ b & a \end{pmatrix} \in S$, where

$$\mathbb{Z}\left[\sqrt{2}\right] = \left\{a + b\sqrt{2} | a, b \in \mathbb{Z}\right\}$$

(i) Show that *f* is a homomorphism.

[06 Marks]

(ii) Find the kerf.

[03 Marks]

(iii) Show that $S \cong \mathbb{Z}[\sqrt{2}]$.

[03 Marks]

03. (a) Let I and I be ideals of a ring R. Define a mapping $\phi: I \longrightarrow {(I+J)}/{f}$ satisfy the

following conditions:

(i) ϕ is a onto ring homomorphism.

[06 Marks]

(ii) $ker\phi = I \cap J$.

- [02 Marks]
- (b) (i) State the Fundamental Theorem of Homomorphism for rings.
- [02 Marks]
- (ii) Giving reasons, conclude that ${}^I/_{I \cap J} \cong {}^{(I+J)}/_{J}$, where I and J are

ideals of a ring R.

[05 Marks]

(iii) Verify that
$$\binom{12}{84} \cong \binom{3}{21}$$
.

[05 Marks]

04. (a) Let $A = \{b + ra | b \in I \text{ and } r \in R\}$, where I is an ideal of a ring R and $a \in R$,

Show that:

(i) A is an ideal of R

[04 Marks]

(ii) $I \subseteq A$ and $\alpha \in A$.

- [02 Marks]
- (iii) $A \subseteq \bigcap_{J \in B} J$, where $B = \{J | J \text{ is an ideal of } R \text{ containing } I \text{ and } a\}$

Deduce that A = (l, a).

[02 Marks]

- (iv) If R is the set of integers \mathbb{Z} , then $(n_0) = \{n_0 r | r \in \mathbb{Z}\}$.
- [02 Marks]

(b) (i) Define a maximal ideal in a ring R.

- [02 Marks]
- (ii) Let I be a proper ideal of a ring R. Prove that if (I, a) = R for any $a \in R \setminus I$, then I is a maximal ideal of R. [04 Marks]
- (iii) Let I = (3). Show that $(I, 2) = \mathbb{Z}$. Deduce that (3) is a maximal ideal of \mathbb{Z} .

Is (12) a maximal ideal of \mathbb{Z} ? Justify your answer.

[04 Marks]

05. (a) (i) Define a prime ideal in a ring R.

[02 Marks]

(ii) Let I be a proper ideal of a ring R. Prove that I is a prime ideal if and only if the quotient ring R/I has no zero divisors.

[06 Marks]

- (b) Let $I = \{p(x) \in \mathbb{Z}[x] | p(0) = 0\}$, where $\mathbb{Z}[x]$ is the set of all polynomials over \mathbb{Z} .
 - (i) Show that I is an ideal in $\mathbb{Z}[x]$

[04 Marks]

(ii) Appling Fundamental Theorem of Homomorphism of rings for the mapping

$$\phi: \mathbb{Z}[x] \to \mathbb{Z}$$
 given by $\phi(p(x)) = p(0)$ for all $p(x) \in \mathbb{Z}[x]$,

show that $\mathbb{Z}[x]/I \cong \mathbb{Z}$. Deduce that I is a prime ideal.

[08 Marks]

- 06. (a) Define each of the following:
 - (i) nil radical \sqrt{I} of an ideal I of a ring R.

[02 Marks]

(ii) semiprime ideal of a ring R.

[02 Marks]

(b) Let I and J be two ideals of a ring R. Show that:

(i)
$$I \subseteq \sqrt{I}$$

[04 Marks]

(ii)
$$\sqrt{IJ} = \sqrt{I \cap J} = \sqrt{I} \cap \sqrt{J}$$
.

[08 Marks]

(iii) If R/I has no nilpotent element, then the ideal I is semiprime.

[04 Marks]

07. (a) (i) What is meant by a maximal principle ideal?

[02 Marks]

(ii) Let R be a principle ideal domain. Show that every infinite chain

$$I_1 \subseteq I_2 \subseteq \cdots \subseteq I_n \subseteq I_{n+1} \subseteq \cdots$$
 of R has a maximal ideal.

[04 Marks]

(b) (i) Define an irreducible element of a ring R.

[02 Marks]

(ii) Show that, p is an irreducible element of an integral domain R if

and only if (p) is a maximal principle ideal.

[08 Marks]

(iii) Is $(2 + \sqrt{-5})$ a maximal principle ideal in $\mathbb{Z}(\sqrt{-5})$? Justify your answer.

08. Prove or disprove each of the following:

(i) Boolean ring is commutative	[04 Marks]
(ii) A finite ring with identity which has no zero divisors is a division ring.	[04 Marks]
(iii) \mathbb{Z}_p is a prime field for any prime $p \in \mathbb{Z}$.	[04 Marks]
(iv) Every field contains only one prime field.	[04 Marks]
(v) The quadratic domain $\mathbb{Z}(\sqrt{-5})$ is a unique factorization domain.	[04 Marks]
