The Open University of Sri Lanka B.Sc. /B.Ed. Degree Programme Final Examination - 2016/2017 Pure Mathematics - Level 05 PUU3143/PUE5143 - Riemann Integration

Duration: Two Hours

Date: 12.01.2018

Time: 2.00 p.m. - 4.00 p.m.

Answer Four Questions Only.

1. (a) Let f be a bounded function on [a,b]. If $m \le f(x) \le M$ for each $x \in [a,b]$, where $m,M \in \mathbb{R}$, prove that $m(b-a) \le L(P,f) \le U(P,f) \le M(b-a)$ for each $P \in P[a,b]$.

(b) Let
$$f(x) = \begin{cases} x, & x \in [0,2] \cap \mathbb{Q} \\ -x+2, & x \in [0,2] \cap \mathbb{Q}^c \end{cases}$$
. Show that $\int_{0}^{2} f(x) dx = 3$.

(c) Let f(x) = k where k is a constant and $x \in [a, b]$.

Show that f is Riemann integrable on [a, b] and that $\int_{a}^{b} f(x)dx = k(b-a)$.

- 2. (a) Let f be a bounded function on [a,b]. For each $\varepsilon > 0$ there exists a partition P of [a,b] such that $U(P,f)-L(P,f)<\varepsilon$. Prove that f is Riemann integrable on [a,b].
 - (b) Let $f(x) = \cos x$, $x \in [0, \pi]$. Use Riemann's Criterion to show that f is Riemann integrable on $[0, \pi]$.
 - (c) Let $f(x) = \begin{cases} 1, & x \in [0,1] \cap \mathbb{Q}, \\ 0, & x \in [0,1] \cap \mathbb{Q}^c. \end{cases}$

Use Riemann's Criterion to show that f is not Riemann integrable on [0,1].

- 3. (a) Let f be a bounded and monotonically increasing function on [a,b]. Prove that f is Riemann integrable on [a,b].
 - (b) Let $f(x) = \left(1 + \frac{1}{x}\right)^x$, $x \in [1, 2]$. Show that f is Riemann integrable on [1, 2].
 - (c) Let f be a bounded function on [a,b]. Prove that if f is continuous function on [a,b], then f is Riemann integrable on [a,b].

- 4. (a) Let $f(x) = \begin{cases} \frac{\sin x}{x}, & x \in (0,1], \\ 1, & x = 0. \end{cases}$ Show that f is Riemann integrable on [0,1].
 - (b) Let f be a bounded and Riemann integrable function on [a,b] and k be a real number. Prove that kf is Riemann integrable on [a,b] and $\int_{a}^{b} kf(x)dx = k \int_{a}^{b} f(x)dx.$
 - (c) Let f be a bounded function on [a,b] and k be a non zero real number.
 State whether the following statement is true or false:
 If kf is Riemann integrable on [a,b], then f is Riemann integrable on [a,b].
 Justify your answer.
- 5. (a) Let f and g be Riemann integrable on [a,b]. Prove that fg is Riemann integrable on [a,b].
 - (b) Is the converse of Part (a) true? Justify your answer.
 - (c) Suppose that f is Riemann integrable on [a,b] and for each $x \in [a,b]$, $f(x) \ge \delta$ for some $\delta > 0$. Prove that $\frac{1}{f}$ is Riemann integrable on [a,b].
- 6. (a) Let f be a continuous function on [a,b] and g be a bounded and Riemann integrable function on [a,b]. Prove that $g(x) \ge 0$ on [a,b], then there exists $c \in [a,b]$ such that $\int_a^b f(x) g(x) dx = f(c) \int_a^b g(x) dx.$
 - (b) Show that there exists $c \in [1,2]$ such that $\int_{1}^{2} (x^7 + x^3 2) (x^2 + x + 1) dx = \frac{29}{6} (c^7 + c^3 2)$.
 - (c) Determine the convergence of each of the following improper integrals:

(i)
$$\int_0^1 \frac{1}{\sqrt{1-x}} \, dx;$$

(ii)
$$\int_0^1 \frac{x}{1-x} dx.$$