The Open University of Sri Lanka
B.Sc./B.Ed. Degree Programme
Final Examination- 2016/2017
Applied Mathematics-Level 05
APU 3150/APE 5150 Fluid Mechanics

Duration:-Two hours

Date: - 04.01.2018

Time: 9.30 a.m. -11.30 a.m.

Answer FOUR questions only. Standard notation are used throughout this paper.

- 1. (a) Briefly distinguish between the two types of fluid flow mentioned below.
 - i. Steady/Unsteady flows
 - ii. Uniform/Nonuniform flows
 - iii. Compressible/Incompressible flows
 - iv. Rotational/Irrotational flows.
 - (b) The fluid flow field with velocity vector $\mathbf{q} = x^2y\mathbf{i} + y^2z\mathbf{j} (2xyz + z^2y)\mathbf{k}$, in the usual notation. Verify that **steady, incompressible fluid** motion is possible with the velocity \mathbf{q} .
 - (c) Show that the velocity vector $\mathbf{q} = e^x[(sinz cosy)\mathbf{i} + siny\mathbf{j} + cosz\mathbf{k}]$ represents possible **irrotational** motion of an incompressible fluid.
- 2. (a) Show that $\underline{q} = (-\omega y, \omega x, 0)$, where ω is a constant, represents the velocity of an incompressible fluid in a **rotational motion**, and that streamlines are the circles lying on the cylinders $x^2 + y^2 = a^2$ and the planes z = c, where a and c parameters.

Find the **vorticity vector** in this motion, and show that the vortex lines are parallel to the z- axis.

(b) Show that equation of continuity can be reduced to the form $\nabla^2 \phi = 0$ for an incompressible fluid in an irrotational motion, where ϕ denotes the velocity potential.

Verify that $\phi = \frac{Cx}{r^3}$, where C is a constant and $r^2 = x^2 + y^2 + z^2$, represents possible motion satisfying the above form of the continuity equation. What would be the fluid velocity, in this motion?

3. A fluid of variable density ρ , is in equilibrium under the external force \underline{F} per unit mass. By considering equilibrium of an arbitrary portion of fluid of volume V bounded by a surface S every element δS of which is acted upon by a **pressure** force $-\underline{n}(p\delta S)$, where \underline{n} is a unit vector in the direction outward to the element δS , obtain the equation $\rho \underline{F} = \operatorname{grad} p$.

[Gauss' divergence theorem for a vector field may be assumed here.]

- (a) If $\underline{F} = -g\underline{k}$, where g is the constant of gravitation, and the unit vector \underline{k} points vertically upwards, deduce that $dp = -\rho g dz$.
- (b) Furthermore, if $\rho = \rho_0 exp(-z)$ where ρ_0 is the constant density on the free surface, z = 0, show that $p = p_0 \rho_0 g(1 e^{-z})$, where p_0 is the constant pressure acting on the free surface.
- 4. A right circular cylinder r = a, where $r^2 = x^2 + y^2$, stands with its axis vertical and its base attached to a infinite rigid horizontal plane z = 0. It is surrounded by an ocean of incompressible non-viscous liquid of infinite extent, bounded below by the plane z = 0 and above by its free surface open to the atmosphere at pressure p_0 . The cylinder extends above the free surface of the ocean, whose height at a large distance from the cylinder is h.

Given that the velocity components of the liquid at the point (x, y, z), are $(\frac{\omega a^2 y}{r^2}, -\frac{\omega a^2 x}{r^2}, 0)$, where ω is a constant, show that the motion is irrotational and find the following quantities:

(a) Velocity potential of the motion.

- (b) Liquid pressure at a point on the surface of the cylinder at a height z.
- (c) Liquid pressure on the plane base z = 0, at distance r(>a) from the axis.
- (d) Height of the free surface above the plane base z = 0, as it touches the cylinder.
- 5. Write down, without derivation, Bernoullis equation for unsteady irrotational motion of an incompressible non-viscous liquid.

A spherical bubble of gas is inside an infinite liquid of constant density ρ . Initially (at time t=0), its radius is a, pressure of the gas is p_0 and the sphere begins to expand radially, its radius R(t) and pressure p satisfying the relationship $p = p_0(\frac{a}{R})^4$. Assuming the form $\underline{q} = (R^2 \dot{R}) \frac{e_r}{r^2}$, where $\dot{R} = \frac{dR}{dt}$ for resulting **liquid velocity**, in the region $r \ge a$ show that this motion is irrotational with velocity potential $\phi = (R^2 \dot{R}) \frac{1}{r}$.

Using Bernoullis equation and the substitution $\ddot{R} = \frac{dQ}{dR}$, where $Q = \frac{\dot{R}^2}{2}$, show further that $\dot{R}^2 = \frac{2P_0}{\rho} \{ (\frac{\dot{R}}{a})^3 - (\frac{\dot{R}}{a})^4 \}$.

- 6. (a) Given the complex potential function $f(z) = z^2$, $z \in \mathbb{C}$ find the streamlines and equipotential lines, and verify that they are mutually orthogonal.
 - (b) Consider the complex potential function $F(z) = U(z + \frac{a^2}{z})$ where U and a are positive constants. Find the stream function and the complex velocity in this motion.

Show that

- i. One of the stream lines consists of the real axis, y = 0, and the circle r = a, fluid occupying the region outside this circle.
- ii. Velocity vector for large r is of magnitude U, and directed parallel to the x-axis.

Find the points on the circle r = a where the pressure is maximum.

66666666